【題目】設(shè)函數(shù),.
(1)若函數(shù)f(x)在處有極值,求函數(shù)f(x)的最大值;
(2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式在上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由;
【答案】(1)函數(shù)f(x)的最大值為(2)存在,詳見(jiàn)解析
【解析】
(1)函數(shù)f(x)在處有極值說(shuō)明
(2)對(duì)求導(dǎo),并判斷其單調(diào)性。
解:(1)由已知得:,且函數(shù)f(x)在處有極值
∴,
∴
∴,
∴
當(dāng)時(shí),,f(x)單調(diào)遞增;
當(dāng)時(shí),,f(x)單調(diào)遞減;
∴函數(shù)f(x)的最大值為.
(2)由已知得:
①若,則時(shí),
∴在上為減函數(shù),
∴在上恒成立;
②若,則時(shí),
∴在[0,+∞)上為增函數(shù),
∴,
不能使在上恒成立;
③若,則時(shí),
,
當(dāng)時(shí),,
∴在上為增函數(shù),
此時(shí),
∴不能使在上恒成立;
綜上所述,b的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查某廠2000名工人的生產(chǎn)技能情況,隨機(jī)抽查了該廠名工人某天的產(chǎn)量(單位:件),整理后得到如下的頻率分布直方圖(產(chǎn)量的區(qū)間分別為:),其中產(chǎn)量在的工人有6名.
(1)求這一天產(chǎn)量不小于25的工人數(shù);
(2)該廠規(guī)定從產(chǎn)量低于20件的工人中選取2名工人進(jìn)行培訓(xùn),求這兩名工人不在同一分組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時(shí),寫(xiě)出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;
(3)若對(duì)任意的實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】保護(hù)環(huán)境,防治環(huán)境污染越來(lái)越得到人們的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬(wàn)元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為.現(xiàn)為了減少大氣污染,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為萬(wàn)元,除塵后,當(dāng)日產(chǎn)量時(shí),每日生產(chǎn)總成本.
(1)求的值;
(2)若每噸產(chǎn)品出廠價(jià)為48萬(wàn)元,試求除塵后日產(chǎn)量為多少噸時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,討論的單調(diào)性;
(2)若,且對(duì)于函數(shù)的圖象上兩點(diǎn), ,存在,使得函數(shù)的圖象在處的切線.求證;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,已知四棱錐,底面為菱形,,
, 平面, 分別是的中點(diǎn)。
(1)證明: ;
(2)若為上的動(dòng)點(diǎn),與平面所成最大角
的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)A(﹣2,0)、B(2,0),動(dòng)點(diǎn)P滿足.
(1)求動(dòng)點(diǎn)P的軌跡Ω的方程;
(2)若橢圓上點(diǎn)(x0,y0)處的切線方程是:
①過(guò)直線l:x=4上一點(diǎn)M引Ω的兩條切線,切點(diǎn)分別是P、Q,求證:直線PQ恒過(guò)定點(diǎn)N;
②是否存在實(shí)數(shù)λ,使得|PN|+|QN|=λ|PN||QN|?若存在,求出λ的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在倡導(dǎo)低碳、節(jié)能減排政策的推動(dòng)下,越來(lái)越多的消費(fèi)者選擇購(gòu)買(mǎi)新能源汽車(chē).某品牌新能源汽車(chē)的行駛里程x(萬(wàn)公里)與該里程內(nèi)維修保養(yǎng)的總費(fèi)用y(千元)的統(tǒng)計(jì)數(shù)據(jù)如下:
1 | 2 | 3 | 4 | 5 | 6 | |
0.8 | 1.8 | 3.3 | 4.5 | 4.7 | 6.8 |
(1)根據(jù)表中數(shù)據(jù)建立y關(guān)于x的回歸方程為.我們認(rèn)為,若殘差絕對(duì)值,則該數(shù)據(jù)為可疑數(shù)據(jù),請(qǐng)找出上表中的可疑數(shù)據(jù);
(2)經(jīng)過(guò)確認(rèn),數(shù)據(jù)采集有誤,(1)中可疑數(shù)據(jù)的維修保養(yǎng)總費(fèi)用應(yīng)增加0.7千元.請(qǐng)重新利用線性回歸模型擬合數(shù)據(jù).(精確到0.01)
附:,.,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從星期一到星期六安排甲、乙、丙三人值班,每人值2天班,如果甲不安排在星期一,乙不安排在星期六,那么值班方案種數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com