【題目】一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如表所示(單位輛),若按A,B,C三類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,則A類轎車有10輛
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標準型 | 300 | 450 | 600 |
(1)求下表中z的值;
(2)用隨機抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:94,86,92,96,87,93,90,82把這8輛轎車的得分看作一個總體,從中任取一個得分數(shù)記這8輛轎車的得分的平均數(shù)為,定義事件{,且函數(shù)沒有零點},求事件發(fā)生的概率
【答案】(1)400;(2).
【解析】
試題(1)設該廠本月生產(chǎn)轎車為n輛,由題意得:,求得,可得的值 (2) 求出8輛轎車的得分的平均數(shù)為,由,且函數(shù)沒有零點 可得,由此解得的范圍,求得發(fā)生當且僅當的值,從而求出事件發(fā)生的概率
試題解析:(1)設該廠本月生產(chǎn)轎車為輛,由題意得,所以 =2000-100-300-150-450-600=400 4分
(2) 8輛轎車的得分的平均數(shù)為6分
把8輛轎車的得分看作一個總體,從中任取一個分數(shù)對應的基本事件的總數(shù)為個,
由,且函數(shù)沒有零點
10分
發(fā)生當且僅當的值為:8 6, 9 2, 8 7, 9 0共4個,
12分
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解學生對食堂用餐的滿意度,從全校在食堂用餐的3000名學生中,隨機抽取100名學生對食堂用餐的滿意度進行評分.根據(jù)學生對食堂用餐滿意度的評分,得到如圖所示的頻率分布直方圖,
(1)求頻率分布直方圖中a的值及該樣本的中位數(shù)
(2)規(guī)定:學生對食堂用餐滿意度的評分不高于80分為“不滿意”,試估計該校在食堂用餐的3000名學生中“不滿意”的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(選修4-4:坐標系與參數(shù)方程)
已知曲線C的極坐標方程是ρ=2cosθ,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線L的參數(shù)方程是(t為參數(shù)).
(1)求曲線C的直角坐標方程和直線L的普通方程;
(2)設點P(m,0),若直線L與曲線C交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線的拋物線經(jīng)過點和.
(1)求拋物線解析式及頂點坐標;
(2)設點是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在的方格表中,每個格被染上紅、藍、黃、綠四種顏色之一,若每個的子方格表包含每種顏色的格均為一,稱此染法為“均衡”的.則所有不同的均衡的染法有__________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正數(shù)數(shù)列的前n項和為,滿足,.
(1)求數(shù)列的通項公式,若恒成立,求k的范圍;
(2)設,若是遞增數(shù)列,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com