【題目】1)在復(fù)數(shù)范圍內(nèi)解方程為虛數(shù)單位)

2)設(shè)是虛數(shù),是實數(shù),且

i)求的值及的實部的取值范圍;

ii)設(shè),求證:為純虛數(shù);

iii)在(ii)的條件下求的最小值.

【答案】1;(2)(i;ii)證明見解析;(iii

【解析】

1)利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等構(gòu)造方程組來進(jìn)行求解;(2)(i)采用待定系數(shù)法,根據(jù)實數(shù)的定義構(gòu)造方程即可解得,利用的范圍求得的范圍;(ii)利用復(fù)數(shù)的運算進(jìn)行整理,根據(jù)純虛數(shù)的定義證得結(jié)論;(iii)將整理為,,利用基本不等式求得最小值.

1

設(shè),則

,解得:

(2)(i)設(shè)

為實數(shù) ,整理可得:

ii

由(i)知:,則

是純虛數(shù)

iii

,則,

(當(dāng)且僅當(dāng)時取等號)

的最小值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為函數(shù)的導(dǎo)函數(shù).

(1)設(shè)函數(shù)的圖象與軸交點為,曲線點處的切線方程是,求,的值;

(2)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某中學(xué)甲、乙兩班各隨機抽取 名同學(xué),測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )

A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大

C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,準(zhǔn)線為已知點在拋物線上,點上,是邊長為4的等邊三角形.

(1)求的值;

(2)若直線是過定點的一條直線,且與拋物線交于兩點,過的垂

線與拋物線交于兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過一段時間的產(chǎn)銷,得到了的一組統(tǒng)計數(shù)據(jù)如下表:

(1)請判斷中,哪個模型更適合刻畫,之間的關(guān)系?可從函數(shù)增長趨勢方面給出簡單的理由;

(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計當(dāng)日產(chǎn)量時,日銷售額是多少?

,,

,.

線性回歸方程中,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計,繪制了頻率分布直方圖如圖所示,規(guī)定80分及以上者晉級成功,否則晉級失敗.

晉級成功

晉級失敗

合計

16

50

合計

求圖中a的值;

根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為晉級成功與性別有關(guān)?

將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為X,求X的數(shù)學(xué)期望與方差

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域是,對任意,當(dāng)時,.關(guān)于函數(shù)給出下列四個命題:①函數(shù)是周期函數(shù);②函數(shù)是奇函數(shù);③函數(shù)的全部零點為;④當(dāng)時,函數(shù)的圖象與函數(shù)的圖象有且只有三個公共點.其中真命題的序號為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖為函數(shù)的部分圖象,、是它與軸的兩個交點,、分別為它的最高點和最低點,是線段的中點,且為等腰直角三角形.

1)求的解析式;

2)將函數(shù)圖象上的每個點的橫坐標(biāo)縮短為原來的一半,再向左平移個單位長度得到的圖象,求的解析式及單調(diào)增區(qū)間,對稱中心.

查看答案和解析>>

同步練習(xí)冊答案