【題目】設拋物線的焦點為,準線為已知點在拋物線上,點上,是邊長為4的等邊三角形.

(1)求的值;

(2)若直線是過定點的一條直線,且與拋物線交于兩點,過的垂

線與拋物線交于兩點,求四邊形面積的最小值.

【答案】(1)2;(2)48

【解析】分析:(1)根據(jù)拋物線定義結合平面幾何知識分析可得 ;(2)設出的直線方程,并與拋物線方程聯(lián)立,整理成關于的一元二次方程,利用根與系數(shù)關系表示出的長,再利用函數(shù)知識求解最值.

詳解:

(1)由題意知 ,則.設準線軸交于點,則

是邊長為4的等邊三角形, ,所以,

(2)設直線的方程為,設,

聯(lián)立,則,

,

,同理得

則四邊形的面積

,

是關于的增函數(shù),

,當且僅當時取得最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某高校共有10000人,其中男生7500人,女生2500人,為調(diào)查該校學生每則平均體育運動時間的情況,采用分層抽樣的方法,收集200位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).調(diào)查部分結果如下列聯(lián)表:

男生

女生

總計

每周平均體育運動時間不超過4小時

35

每周平均體育運動時間超過4小時

30

總計

200

(1)完成上述每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有把握認為“該校學生的每周平均體育運動時間與性別有關”;

(2)已知在被調(diào)查的男生中,有5名數(shù)學系的學生,其中有2名學生每周平均體育運動時間超過4小時,現(xiàn)從這5名學生中隨機抽取2人,求恰有1人“每周平均體育運動時間超過4小時”的概率.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系中,曲線的參數(shù)方程是為參數(shù),),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程是,等邊的頂點都在上,且點,依逆時針次序排列,點的極坐標為.

(1)求點,的直角坐標;

(2)設上任意一點,求點到直線距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

①函數(shù)fx=2a2x-1-1的圖象過定點(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當x≥0時,fx=xx+1),若fa=-2則實數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對于任意xRfx=f4-x)成立,則fx)圖象關于直線x=2對稱;

⑤對于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,.

(1)當時,判斷曲線與曲線的位置關系;

(2)當曲線上有且只有一點到曲線的距離等于時,求曲線上到曲線距離為的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當時,,若函數(shù)恰有一個零點,則實數(shù)的取值范圍是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)在復數(shù)范圍內(nèi)解方程為虛數(shù)單位)

2)設是虛數(shù),是實數(shù),且

i)求的值及的實部的取值范圍;

ii)設,求證:為純虛數(shù);

iii)在(ii)的條件下求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的個數(shù)是(

①若直線平面,直線,則;②若直線l和平面內(nèi)的無數(shù)條直線垂直,則直線l與平面必相交;③過平面外一點有且只有一條直線和平面垂直;④過直線外一點有且只有一個平面和直線a垂直

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=-x3x2+(m2-1)x(xR),其中m>0.

(1)m=1求曲線yf(x)在點(1,f(1))處的切線斜率;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習冊答案