【題目】下列說法正確的是(

A.回歸直線一定經過樣本點的中心

B.若兩個具有線性相關關系的變量的相關性越強,則線性相關系數(shù)的值越接近于1

C.在殘差圖中,殘差點分布的水平帶狀區(qū)域越窄,說明模型的擬合精度越高

D.在線性回歸模型中,相關指數(shù)越接近于1,說明回歸模型的擬合效果越好

【答案】ACD

【解析】

對于選項A:由回歸直線恒過樣本中心點,不一定經過每個樣本點即可判斷;

對于選項B:由相關系數(shù)的絕對值越趨近于1,相關性越強即可判斷;

對于選項C:由在殘差圖中,殘差點分布的水平帶狀區(qū)域越窄,說明模型的擬合精度越高即可判斷;

對于選項D:由在線性回歸模型中,相關指數(shù)越接近于1,說明線性回歸模型的擬合效果越好即可判斷.

對于選項A:因為回歸直線恒過樣本中心點,不一定經過每個樣本點,故選項A正確;

對于選項B:由相關系數(shù)的絕對值越趨近于1,相關性越強可知,若兩個變量負相關,其相關性越強,則線性相關系數(shù)的值越接近于,故選項B錯誤;

對于選項C:因為在殘差圖中,殘差點分布的水平帶狀區(qū)域越窄,說明模型的擬合精度越高,故選項C正確;

對于選項D:因為在線性回歸模型中,相關指數(shù)越接近于1,說明線性回歸模型的擬合效果越好,故選項D正確;

故選:ACD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知m{11,13,15,17,19},n{20002001,,2019},則mn的個位數(shù)是1的概率為____________ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某企業(yè)中隨機抽取了5名員工測試他們的藝術愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計結果如下表(注:指數(shù)值越高素質越優(yōu)秀):

1)求創(chuàng)新靈感指數(shù)關于藝術愛好指數(shù)的線性回歸方程;

2)企業(yè)為提高員工的藝術愛好指數(shù),要求員工選擇音樂和繪畫中的一種進行培訓,培訓音樂次數(shù)對藝術愛好指數(shù)的提高量為,培訓繪畫次數(shù)對藝術愛好指數(shù)的提高量為,其中為參加培訓的某員工已達到的藝術愛好指數(shù).藝術愛好指數(shù)已達到3的員工甲選擇參加音樂培訓,藝術愛好指數(shù)已達到4的員工乙選擇參加繪畫培訓,在他們都培訓了20次后,估計誰的創(chuàng)新靈感指數(shù)更高?

參考公式:回歸方程中,,.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為F,直線lC交于M,N兩點.

1)若l過點F,點M,N到直線y2的距離分別為d1,d2,且,求l的方程;

2)若點M的坐標為(01),直線m過點MC于另一點N′,當直線lm的斜率之和為2時,證明:直線NN′過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于曲線,有下述四個結論:

①曲線C是軸對稱圖形;

②曲線C關于點中心對稱;

③曲線C上的點到坐標原點的距離最小值是;

④曲線C與坐標軸圍成的圖形的面積不大于,

其中所有正確結論的編號是(

A.①③B.①④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為4,右焦點為,且橢圓上的點到點的距離的最小值與最大值的積為1,圓軸交于兩點.

1)求橢圓的方程;

2)動直線與橢圓交于兩點,且直線與圓相切,求的面積與的面積乘積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產不同規(guī)格的一種產品,根據(jù)檢測標準,其合格產品的質量y(g)與尺寸x(mm)之間近似滿足關系式c為大于0的常數(shù)).按照某項指標測定,當產品質量與尺寸的比在區(qū)間內時為優(yōu)等品.現(xiàn)隨機抽取6件合格產品,測得數(shù)據(jù)如下:

尺寸

38

48

58

68

78

88

質量

16.8

18.8

20.7

22.4

24

25.5

質量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

1)現(xiàn)從抽取的6件合格產品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機變量ξ的分布列和期望;

2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

根據(jù)所給統(tǒng)計量,求y關于x的回歸方程.

附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線 與橢圓有且只有一個公共點.

(Ⅰ)求橢圓的方程及點的坐標;

(Ⅱ)設是坐標原點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調性;

2)若函數(shù)在區(qū)間上有兩個極值點,,證明:

查看答案和解析>>

同步練習冊答案