【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),,證明:

【答案】1)詳見解析;(2)詳見解析.

【解析】

1)根據(jù)函數(shù),求導(dǎo),令,分,兩種情況討論求解.

2)由(1)得到, 求導(dǎo),根據(jù)在區(qū)間上有兩個(gè)極值點(diǎn),,則有,可得,則,要證,即證:,轉(zhuǎn)化為 ,構(gòu)造函數(shù),利用其單調(diào)性求解.

1)因?yàn)楹瘮?shù),

所以,

,

當(dāng),即時(shí),,上是增函數(shù),

當(dāng),即時(shí),令,解得,

當(dāng)時(shí),,當(dāng)時(shí),,

所以上是減函數(shù),在上是增函數(shù).

2)因?yàn)?/span>,

所以,

因?yàn)?/span>在區(qū)間上有兩個(gè)極值點(diǎn),,

所以,

所以,

不妨設(shè),

要證,

即證:,

即證:

即證:,

,

所以,

,

所以成立,

所以上是增函數(shù),

所以

所以成立,

所以上是增函數(shù),

所以.

所以原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.回歸直線一定經(jīng)過樣本點(diǎn)的中心

B.若兩個(gè)具有線性相關(guān)關(guān)系的變量的相關(guān)性越強(qiáng),則線性相關(guān)系數(shù)的值越接近于1

C.在殘差圖中,殘差點(diǎn)分布的水平帶狀區(qū)域越窄,說明模型的擬合精度越高

D.在線性回歸模型中,相關(guān)指數(shù)越接近于1,說明回歸模型的擬合效果越好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,在收費(fèi)元的基礎(chǔ)上,每超過(不足,按計(jì)算)需再收元.該快遞公司承攬了一個(gè)工藝品廠家的全部玻璃工藝品包裹的郵寄事宜,該廠家隨機(jī)統(tǒng)計(jì)了件這種包裹的兩個(gè)統(tǒng)計(jì)數(shù)表如下:

包裹重量

包裹數(shù)

損壞件數(shù)

包裹重量

出廠價(jià)(元件)

賣價(jià)(元件)

估計(jì)該快遞公司對(duì)每件包裹收取快遞費(fèi)的平均值;

將包裹重量落入各組的頻率視為概率,該工藝品廠家承擔(dān)全部運(yùn)費(fèi),每個(gè)包裹只有一件產(chǎn)品,如果客戶收到有損壞品的包裹,該快遞公司每件按其出廠價(jià)的賠償給廠家.現(xiàn)該廠準(zhǔn)備給客戶郵寄重量在區(qū)間內(nèi)的工藝品各件,求該廠家這兩件工藝品獲得利潤(rùn)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)在圓上,直線交橢圓于,兩點(diǎn).

1)求橢圓的方程;

2)若為坐標(biāo)原點(diǎn)),求的值;

3)設(shè)點(diǎn)關(guān)于軸對(duì)稱點(diǎn)為與點(diǎn)不重合),且直線軸交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)棱垂直于底面,的中點(diǎn),平行于,平行于面,.

(1)求的長(zhǎng);

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是離心率為的橢圓的左、右頂點(diǎn),是橢圓的右焦點(diǎn),且.

1)求橢圓的方程;

2)已知?jiǎng)又本與橢圓有且只有一個(gè)公共點(diǎn).

①若軸于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍;

②設(shè)直線交直線于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并解答.已知等差數(shù)列的公差,前項(xiàng)和為,若_______,數(shù)列滿足,.

1)求的通項(xiàng)公式;

2)求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線上,且,點(diǎn)的軌跡為

(1)求直線及曲線的極坐標(biāo)方程;

(2)若射線與直線交于點(diǎn),與曲線交于點(diǎn)(與原點(diǎn)不重合),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案