已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問,是否存在軸上的點(diǎn),使得對(duì)任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

(1);(2)存在點(diǎn)使得為定值.

解析試題分析:(1)橢圓的標(biāo)準(zhǔn)方程是,則本題中有,已知三角形的面積為4,說明,這樣可以求得;(2)存在性命題的解法都是假設(shè)存在,然后想辦法求出.下面就是想法列出關(guān)于的方程,本題是直線與橢圓相交問題,一般方法是設(shè)交點(diǎn)為,把直線方程代入橢圓方程交化簡(jiǎn)為,則有,而,就可用表示,這個(gè)值為定值,即與無(wú)關(guān),分析此式可得出結(jié)論..
試題解析:(1)設(shè)橢圓的短半軸為,半焦距為
,由
解得,則橢圓方程為.     (6分)
(2)由 
設(shè)由韋達(dá)定理得:      

=
==,     (10分)
當(dāng),即時(shí),為定值,所以,存在點(diǎn)使得為定值(14分).
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)直線與橢圓相交問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長(zhǎng)等于的長(zhǎng)半軸長(zhǎng)。

(1)求,的方程;
(2)設(shè)軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線相交于點(diǎn)A,B,直線MA,MB分別與相交與D,E.
①證明:;
②記△MAB,△MDE的面積分別是.問:是否存在直線,使得=?請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設(shè),過點(diǎn)作直線(不與軸重合)交橢圓于兩點(diǎn),連結(jié)分別交直線、兩點(diǎn),試探究直線、的斜率之積是否為定值,若為定值,請(qǐng)求出;若不為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn),長(zhǎng)軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過焦點(diǎn)斜率為)的直線交橢圓兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn). 試問橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).

(1)用、表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(2)求的面積,證明的面積與無(wú)關(guān),只與有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與、平行的切線,切點(diǎn)分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線C:,點(diǎn)A、B在拋物線C上.

(1)若直線AB過點(diǎn)M(2p,0),且=4p,求過A,B,O(O為坐標(biāo)原點(diǎn))三點(diǎn)的圓的方程;
(2)設(shè)直線OA、OB的傾斜角分別為,且,問直線AB是否會(huì)過某一定點(diǎn)?若是,求出這一定點(diǎn)的坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

巳知橢圓的離心率是.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過點(diǎn)A(1,0)的直線,使點(diǎn)C(2,0)關(guān)于直線的對(duì)稱點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.

(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線分別交軸于點(diǎn),若直線與過點(diǎn)的圓相切,切點(diǎn)為.證明:線段的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓G:.過點(diǎn)(m,0)作圓的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案