已知橢圓的離心率為,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.

(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線分別交軸于點(diǎn),若直線與過(guò)點(diǎn)的圓相切,切點(diǎn)為.證明:線段的長(zhǎng)為定值.

(1);(2)定值為2,證明見解析.

解析試題分析:(1)根據(jù)橢圓的離心率、長(zhǎng)軸與短軸的關(guān)系建立的方程可求得橢圓的方程;;(2)設(shè),然后用此點(diǎn)坐標(biāo)分別表示出、的方程,然后根據(jù)直線與圓相切性質(zhì)、平面幾何知識(shí)化的關(guān)系,進(jìn)而確定其為定值.
試題解析:(1)由題意可得,得  ①.
,即   ②,
解①②,得
∴橢圓的方程為
(2)由(1)知,設(shè),則
直線的方程為,令,得
直線的方程為,令,得
設(shè),則
,


,即
,∴,即線段的長(zhǎng)為定值2.
考點(diǎn):1、橢圓的方程及幾何性質(zhì);2、直線與圓的位置關(guān)系;3、直線與橢圓的位置關(guān)系;4、定值問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問,是否存在軸上的點(diǎn),使得對(duì)任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的方程為,其中.
(1)求橢圓形狀最圓時(shí)的方程;
(2)若橢圓最圓時(shí)任意兩條互相垂直的切線相交于點(diǎn),證明:點(diǎn)在一個(gè)定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的短半軸長(zhǎng)為,動(dòng)點(diǎn)在直線為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長(zhǎng)為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過(guò)點(diǎn)的垂線與以為直徑的圓交于點(diǎn)
求證:線段的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知離心率為的橢圓的頂點(diǎn)恰好是雙曲線的左右焦點(diǎn),點(diǎn)是橢圓上不同于的任意一點(diǎn),設(shè)直線的斜率分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng),在焦點(diǎn)在軸上的橢圓上求一點(diǎn)Q,使該點(diǎn)到直線(的距離最大。
(3)試判斷乘積“(”的值是否與點(diǎn)(的位置有關(guān),并證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),離心率為
(1)求橢圓的方程;
(2)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓的右頂點(diǎn).直線與直線分別與軸交于點(diǎn),試問以線段為直徑的圓是否過(guò)軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.

(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
(ⅰ)當(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求直線的方程,
并證明
(ⅱ)求證:線段的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖;已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)M、N.

(1)求橢圓C的方程;
(2)求的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與軸交于點(diǎn)RS,O為坐標(biāo)原點(diǎn)。求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定點(diǎn)F(0,1)和直線l1:y=-1,過(guò)定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過(guò)點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求·的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案