若函數(shù)f(x)、g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)-g(x)=ex,則有( )
A.f(2)<f(3)<g(0) B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3) D.g(0)<f(2)<f(3)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-8函數(shù)與方程(解析版) 題型:填空題
函數(shù)f(x)=3x-7+lnx的零點(diǎn)位于區(qū)間(n,n+1)(n∈N)內(nèi),則n=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-5指數(shù)及指數(shù)函數(shù)(解析版) 題型:解答題
已知函數(shù)f(x)=2x,g(x)=+2.
(1)求函數(shù)g(x)的值域;
(2)求滿足方程f(x)-g(x)=0的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:填空題
已知函數(shù)f(x)=x2-2ax+5在(-∞,2]上是減函數(shù),且對任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,則實(shí)數(shù)a的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:選擇題
圖中曲線是冪函數(shù)y=xn在第一象限的圖象,已知n取±2,±四個值,則對應(yīng)于曲線C1,C2,C3,C4的n值依次為( )
A.-2,-,,2 B.2,,-,-2
C.-,-2,2, D.2,,-2,-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:填空題
y=f(x)是定義在R上的偶函數(shù)且在[0,+∞)上遞增,不等式f()<f(-)的解集為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:選擇題
下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的是( )
A.y= B.y=|x|
C.y=x+ D.y=2-x-2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:填空題
已知函數(shù)f(x)= (a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在[,+∞)上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有f()<.
其中正確命題的所有序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:選擇題
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(-2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(-2)
D.函數(shù)f(x)有極大值f(-2)和極小值f(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com