11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{{{a_1}({{4^n}-1})}}{3}$,若a3=8,則a1=$\frac{1}{2}$.

分析 由a3=S3-S2,且a3=8,能求出a1的值.

解答 解:∵數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{{{a_1}({{4^n}-1})}}{3}$,
∴a1=S1=$\frac{{a}_{1}(4-1)}{3}={a}_{1}$,
a2=S2-S1=$\frac{{a}_{1}({4}^{2}-1)}{3}$-a1=4a1
a3=S3-S2=$\frac{{a}_{1}({4}^{3}-1)}{3}-\frac{{a}_{1}({4}^{2}-1)}{3}$=16a1,
∵a3=8,∴a1=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查數(shù)列的首項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知非零向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,|$\overrightarrow{a}$-$\overrightarrow$|=4|$\overrightarrow$|.設(shè)$\overrightarrow$與$\overrightarrow$-$\overrightarrow{a}$的夾角為θ,則cosθ=( 。
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$\frac{{\sqrt{15}}}{4}$D.$-\frac{{\sqrt{15}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.二項(xiàng)式(x-a)7的展開(kāi)式中,含x4項(xiàng)的系數(shù)為-280,則${∫}_{a}^{2e}$$\frac{1}{x}$dx=( 。
A.ln2B.ln2+1C.1D.$\frac{{{e^2}-1}}{{4{e^2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中a>b>0,F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),點(diǎn)P是橢圓C上一點(diǎn),PO⊥F2M,且$\overrightarrow{{F_1}M}=λ\overrightarrow{MP}$.
(1)當(dāng)$a=2\sqrt{2}$,b=2,且PF2⊥F1F2時(shí),求λ的值;
(2)若λ=2,試求橢圓C離心率e的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列命題正確的是( 。
A.若兩條直線和同一個(gè)平面平行,則這兩條直線平行
B.若一直線與兩個(gè)平面所成的角相等,則這兩個(gè)平面平行
C.若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行
D.若兩個(gè)平面垂直于同一個(gè)平面,則這兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|x2-9>0},B={x|2<x≤5},則A∩B=(  )
A.(3,5]B.(-∞,-3)∪(5,+∞)C.(-∞,-3)∪[5,+∞)D.(-∞,2]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某變量x,y,z滿足約束條件$\left\{\begin{array}{l}x+y≤2\\ 2x-3y≤9\\ x≥0\end{array}\right.$則z=3x-y的最大值為( 。
A.-2B.10C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(1,1),$\overrightarrow m$=$\overrightarrow a$-$\overrightarrow b$,$\overrightarrow n$=$\overrightarrow a$+λ$\overrightarrow b$,如果$\overrightarrow m$⊥$\overrightarrow n$,那么實(shí)數(shù)λ=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=$\frac{1}{2+sinx+cosx}$的最大值是1+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案