命題“若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內是減函數(shù),則loga2<0”的逆否命題是( 。
A.若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內不是減函數(shù)
B.若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內不是減函數(shù)
C.若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內是減函數(shù)
D.若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內是減函數(shù)
根據(jù)題意,分析可得,
原命題的條件是“若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內是減函數(shù)”,
結論是“則loga2<0”.
由逆否命題的定義,可得其逆否命題為“若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內不是減函數(shù)”.
故答案A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2}.
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0.
③“若M={-1,0,1},則x2-2x+m>0的解集是實數(shù)集R”的逆否命題.
④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認為正確的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將下面不完整的命題補充完整,并使之成為一個真命題:若函數(shù)f(x)=2x的圖象與函數(shù)g(x)的圖象關于
直線y=x
直線y=x
對稱,則函數(shù)g(x)的解析式是
g(x)=log2x
g(x)=log2x
.(填上你認為可以成為真命題的一種情形即可,不必考慮所有可能的情形)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

19、已知:命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1,則
①否命題是“若函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù),則m>1,”,是真命題;
②逆命題是“若m≤1,則函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù)”,是假命題;
③逆否命題是“若m>1,則函數(shù)在f(x)=ex-mx(0,+∞)上是減函數(shù)”,是真命題;
④逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上不是增函數(shù)”,是真命題.
其中正確結論的序號是
.(填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)一模)把下面不完整的命題補充完整,并使之成為真命題,若函數(shù)f(x)=2+log3x的圖象與g(x)的圖象關于
x軸
x軸
對稱,則函數(shù)g(x)=
g(x)=-2-log3x
g(x)=-2-log3x
.(注:填上你認為可以成為真命題的一種答案即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:①若函數(shù)f(x)=x3,則f'(0)=0;②若函數(shù)f(x)=2x2+1,圖象上P(1,3)及鄰近點Q(1+△x,3+△y),則
△y
△x
=4+2△x
;③加速度是動點位移函數(shù)S(t)對時間t的導數(shù);④y=
x2
2x
+lgx
,則y′=
2x•2x-x22x
22x
-
1
x

其中正確的命題為
①②
①②
.(寫上序號)

查看答案和解析>>

同步練習冊答案