【題目】下列四個(gè)命題:
①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x﹣k=0有實(shí)根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若 = ,則 ”的否命題,
其中真命題的個(gè)數(shù)是(
A.0
B.1
C.2
D.3

【答案】D
【解析】解:對(duì)于①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題是“三個(gè)內(nèi)角均為60的三角形是等邊三角形”是真命題;對(duì)于②,∵方程x2+2x﹣k=0無實(shí)根時(shí)△=4+4k<0,即k<﹣1”,∴原命題的逆否命題“若方程x2+2x﹣k=0無實(shí)根,則k<0”是真命題;
對(duì)于③“全等三角形的面積相等”的否命題是“不全等三角形的面積不相等”,故錯(cuò);
對(duì)于④“若 = ,則 ”的否命題是“若 ,則 不垂直 ”是真命題,
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(n)=1+ + +…+ .經(jīng)計(jì)算得f(4)>2,f(8)> ,f(16)>3,f(32)>
(1)由上面數(shù)據(jù),試猜想出一個(gè)一般性結(jié)論;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)觀眾對(duì)大型綜藝活動(dòng)《中國好聲音》的收視情況,隨機(jī)抽取了100名
觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對(duì)應(yīng)的人數(shù)表:

場數(shù)

9

10

11

12

13

14

人數(shù)

10

18

22

25

20

5

將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?

非歌迷

歌迷

合計(jì)

合計(jì)

(Ⅱ)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級(jí)歌迷”,已知“超級(jí)歌迷”中有2名女性,若從“超級(jí)歌迷”中任意選取2人,求至少有1名女性觀眾的概率.

0.05

0.01

3.841

6.635

參考公式與數(shù)據(jù): ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:若實(shí)數(shù)x滿足x2﹣4ax+3a2≤0,其中a>0;命題q:實(shí)數(shù)x滿足
(1)若a=1且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個(gè)元素m、n,即滿足m∈A,n∈B,記為(m,n), (Ⅰ)若m∈Z,n∈Z,寫出所有的(m,n)的取值情況,并求事件“方程 所對(duì)應(yīng)的曲線表示焦點(diǎn)在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程 所對(duì)應(yīng)的曲線表示焦點(diǎn)在x軸上的橢圓,且長軸長大于短軸長的 倍”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5 , 給出下列五個(gè)命題:①d<1;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a6|>|a7|.其中正確命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=
(1)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正三棱錐P﹣ABC的底面邊長為4,側(cè)棱長為8,E,F(xiàn)分別為PB,PC上的動(dòng)點(diǎn),求截面△AEF周長的最小值,并求出此時(shí)三棱錐P﹣AEF的體積.

查看答案和解析>>

同步練習(xí)冊答案