【題目】已知f(n)=1+ + +…+ .經(jīng)計算得f(4)>2,f(8)> ,f(16)>3,f(32)> .
(1)由上面數(shù)據(jù),試猜想出一個一般性結(jié)論;
(2)用數(shù)學歸納法證明你的猜想.
【答案】
(1)
解:由題意知, , .…
由此得到一般性結(jié)論: .(或者猜測 也行).
(2)
解:利用數(shù)學歸納法證明:
(1)當n=1時, ,所以結(jié)論成立.
(2)假設n=k(k≥1,k∈N)時,結(jié)論成立,即 ,
那么,n=k+1時, ,
.
所以當n=k+1時,結(jié)論也成立.
綜上所述,上述結(jié)論對n≥1,n∈N都成立,所以猜想成立.
【解析】(1)由題意知, , .…由此得到一般性結(jié)論: .(2)利用數(shù)學歸納法證明即可.
【考點精析】解答此題的關鍵在于理解歸納推理的相關知識,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.
科目:高中數(shù)學 來源: 題型:
【題目】已知⊙O:x2+y2=1和點M(4,2).
(Ⅰ)過點M向⊙O引切線l,求直線l的方程;
(Ⅱ)求以點M為圓心,且被直線y=2x﹣1截得的弦長為4的⊙M的方程;
(Ⅲ)設P為(Ⅱ)中⊙M上任一點,過點P向⊙O引切線,切點為Q.試探究:平面內(nèi)是否存在一定點R,使得 為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)在給定直角坐標系內(nèi)直接畫出f(x)的草圖(不用列表描點),并由圖象寫出函數(shù) f(x)的單調(diào)減區(qū)間;
(2)當m為何值時f(x)+m=0有三個不同的零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點
(1)求E的方程;
(2)若直線與E相交于兩點,且與(為坐標原點)的斜率之和為2,求點到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是(﹣∞,0)∪(0,+∞)上的奇函數(shù),且當x<0時,函數(shù)的部分圖象如圖所示,則不等式xf(x)<0的解集是( )
A.(﹣2,﹣1)∪(1,2)
B.(﹣2,﹣1)∪(0,1)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.
(1)求證:平面平面;
(2)若四棱柱的體積為,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①“等邊三角形的三個內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x﹣k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若 = ,則 ⊥ ”的否命題,
其中真命題的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com