平面直角坐標系中,直線截以原點為圓心的圓所得的弦長為
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標軸交于,當長最小時,求直線的方程;
(3)問是否存在斜率為的直線,使被圓截得的弦為,以為直徑的圓經過原點.若存在,寫出直線的方程;若不存在,說明理由.
(1);(2)x+y﹣2=0;(3)。
解析試題分析:(1)因為O點到直線x﹣y+1=0的距離為,(2分)
所以圓O的半徑為,故圓O的方程為 4分
(2)設直線的方程為,即bx+ay﹣ab=0,
由直線與圓O相切,得,即, 6分
,
當且僅當a=b=2時取等號,此時直線l的方程為x+y﹣2=0 8分
(3)設存在斜率為2的直線滿足題意,設直線為:,
則:得: 10分
依題意得;,
因為以為直徑的圓經過原點,
所以有:
所以存在斜率為2的直線滿足題意,直線為: 14分
考點:圓的方程;直線與圓的位置關系;基本不等式。
點評:此題主要考查了直線與圓的位置關系,涉及的知識較多,綜合性較強。熟練掌握定理及法則以及知識點的靈活應用是解題的關鍵,是一道中檔題。
科目:高中數學 來源: 題型:解答題
已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,與y軸交于點O, B,其中O為原點.
(Ⅰ)求證:△OAB的面積為定值;
(Ⅱ)設直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
己知圓 直線.
(1) 求與圓相切, 且與直線平行的直線的方程;
(2) 若直線與圓有公共點,且與直線垂直,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(理)(本題滿分14分)如圖,已知直線,直線以及上一點.
(Ⅰ)求圓心M在上且與直線相切于點的圓⊙M的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線分別與直線、圓⊙依次相交于A、B、C三點,
求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓內一定點,為圓上的兩不同動點.
(1)若兩點關于過定點的直線對稱,求直線的方程.
(2)若圓的圓心與點關于直線對稱,圓與圓交于兩點,且,求圓的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com