【題目】如圖,在四棱錐中,,底面為平行四邊形,,.
(Ⅰ)證明:;
(Ⅱ)若,求直線與平面所成角的正弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)由平面,可得到,結(jié)合,根據(jù)線面垂直的判定定理即可得到平面,從而可得出;(2)首先以三直線為軸,建立空間直角坐標(biāo)系,可設(shè),從而可確定圖形上各點(diǎn)的坐標(biāo),利用向量垂直數(shù)量積為零列方程組求出平面的法向量,設(shè)直線與平面所成角為,則根據(jù)及空間向量夾角余弦公式,即可求得.
試題解析:(1)平面平面,即,又,平面平面.
(2)分別以三直線為軸,建立如圖所示空間直角坐標(biāo)系,設(shè),則,, ,設(shè)平面的法向量為,則,取,記直線與平面所成角為,,直線與平面所成角的正弦值為.
【方法點(diǎn)晴】本題主要考查線面垂直的判定與性質(zhì),以及利用空間向量求線面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:.
(1)若直線過定點(diǎn),且與圓C相切,求方程;
(2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列, , , 為階“期待數(shù)列”:
①;
②.
()分別寫出一個(gè)單調(diào)遞增的階和階“期待數(shù)列”.
()若某階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.
()記階“期待數(shù)列”的前項(xiàng)和為,試證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C: =1(a>b>0)過點(diǎn)P(1, ).離心率為.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn).
①若直線l過橢圓C的右焦點(diǎn),記△ABP三條邊所在直線的斜率的乘積為t.
求t的最大值;
②若直線l的斜率為,試探究OA2+ OB2是否為定值,若是定值,則求出此
定值;若不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓和雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為( )
A. B. C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)經(jīng)銷一批進(jìn)價(jià)為每件30元的商品,在市場(chǎng)試銷中發(fā)現(xiàn),此商品的銷售單價(jià)x(元)與日銷售量y(件)之間有如下表所示的關(guān)系:
x | 30 | 40 | 45 | 50 |
y | 60 | 30 | 15 | 0 |
在所給的坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn),并確定y與x的一個(gè)函數(shù)關(guān)系式;
(2)設(shè)經(jīng)營(yíng)此商品的日銷售利潤(rùn)為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(分及以上為及格)和平均數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為2,寬為1,.邊分別在軸.軸的正半軸上,點(diǎn)與坐標(biāo)原點(diǎn)重合(如圖所示)。將矩形折疊,使點(diǎn)落在線段上。
(1)若折痕所在直線的斜率為,試求折痕所在直線的方程;
(2)當(dāng)時(shí),求折痕長(zhǎng)的最大值;
(3)當(dāng)時(shí),折痕為線段,設(shè),試求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C所對(duì)的三邊,a2﹣(b﹣c)2=bc,
(1)求角A;
(2)若BC=2 ,角B等于x,周長(zhǎng)為y,求函數(shù)y=f(x)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com