【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽的及格率(分及以上為及格)和平均數(shù)?

【答案】(1)見解析;(2)0.75;70.5.

【解析】

分析:利用頻率分布直方圖中,縱坐標(biāo)與組距的乘積是相應(yīng)的頻率,而頻數(shù)=頻率組距,可得結(jié)論

縱坐標(biāo)與組距的乘積是相應(yīng)的頻率,再求和,即可得到結(jié)論

詳解:(1)利用頻率分布直方圖中,縱坐標(biāo)與組距的乘積是相應(yīng)的頻率,而頻數(shù)=頻率組距,可得結(jié)論,頻率為:0.02510=0.25,頻數(shù)為:0.2560=15.

(2)縱坐標(biāo)與組距的乘積是相應(yīng)的頻率,再求和,即可得到結(jié)論,

1)及格率為:0.01510+0.0310+0.02510+0.00510=0.15+0.3+0.25+0.05=0.75

2)平均數(shù)為:44.50.0110+54.50.01510+64.50.01510+74.50.0310+84.50.02510+94.50.00510=4.45+8.175+9.675+22.35+21.125+4.75=70.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,

(1)系數(shù)為什么值時,方程表示通過原點(diǎn)的直線;

(2)系數(shù)滿足什么關(guān)系時與坐標(biāo)軸都相交;

(3)系數(shù)滿足什么條件時只與x軸相交;

(4)系數(shù)滿足什么條件時是x軸;

(5)設(shè)為直線上一點(diǎn),證明:這條直線的方程可以寫成

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x+sinx+cosx,以下說法中不正確的是(
A.f(x)周期為2π
B.f(x)最小值為﹣
C.f(x)在區(qū)間[0, ]單調(diào)遞增
D.f(x)關(guān)于點(diǎn)x= 對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面為平行四邊形,,

(Ⅰ)證明:

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 , ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時, 都互相垂直;

②當(dāng)變化時, 分別經(jīng)過定點(diǎn)A0,1)和B-1,0);

③不論為何值時, 都關(guān)于直線對稱;

④如果交于點(diǎn),則的最大值是1;

其中,所有正確的結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義在上且滿足下列兩個條件:

①對任意都有;

②當(dāng)時,有,

(1)求,并證明函數(shù)上是奇函數(shù);

(2)驗(yàn)證函數(shù)是否滿足這些條件;

(3)若,試求函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,前n項(xiàng)和為Sn , 且Sn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 且bn=
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在m,n∈N* , 使得Tn=am , 若存在,求出所有滿足題意的m,n,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)設(shè)

①若,求函數(shù)的零點(diǎn);

②若函數(shù)存在零點(diǎn),求的取值范圍.

(2)設(shè),若對任意恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y2=8ax(a>0),直線l傾斜角是45°且過拋物線C1的焦點(diǎn),直線l被拋物線C1截得的線段長是16,雙曲線C2 =1的一個焦點(diǎn)在拋物線C1的準(zhǔn)線上,則直線l與y軸的交點(diǎn)P到雙曲線C2的一條漸近線的距離是(
A.2
B.
C.
D.1

查看答案和解析>>

同步練習(xí)冊答案