(本小題12分)已知數(shù)列是等差數(shù)列,其前n項(xiàng)和公式為,
(1)求數(shù)列的通項(xiàng)公式和;
(2)求的值;

(1) ,;(2)令== 。

解析試題分析:(1)設(shè)數(shù)列的首項(xiàng)為,公差為.則根據(jù)題意得到,解得結(jié)論。
(2)由于,那么其倒數(shù)得到的通項(xiàng)公式可以裂項(xiàng),進(jìn)而求解結(jié)論。
解:(1)設(shè)數(shù)列的首項(xiàng)為,公差為.

解得        (4分)
∴數(shù)列的通項(xiàng)公式為,(2分)
(2)令=
=           (6分)
考點(diǎn):本題主要考查等差數(shù)列的前n項(xiàng)和與其通項(xiàng)公式的關(guān)系的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是設(shè)出數(shù)列的基本量,聯(lián)立方程組,進(jìn)而分析得到其通項(xiàng)公式,并利用裂項(xiàng)法求和得到結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和,求數(shù)列成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分12分)已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1 (n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).(1)求過(guò)點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對(duì)于n∈N*,點(diǎn)Pn都在(1)中的直線l上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)在數(shù)列中,,,
(1)證明數(shù)列是等比數(shù)列;       
(2)設(shè)數(shù)列的前項(xiàng)和,求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)已知,三個(gè)數(shù)成等差數(shù)列,其和為6,若分別加上1,2,5之后成等比數(shù)列,求此三數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

將數(shù)列的各項(xiàng)按照第1行排,第2行自左至右排,第3行…的規(guī)律,排成如圖所示的三角形形狀.

(Ⅰ)若數(shù)列是首項(xiàng)為1,公差為3的等差數(shù)列,寫(xiě)出圖中第五行第五個(gè)數(shù);
(Ⅱ)若函數(shù),求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)為圖中第行所有項(xiàng)的和,在(Ⅱ)的條件下,用含的代數(shù)式表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列滿足。
(Ⅰ)求通項(xiàng)的通項(xiàng)公式及的最大值;
(Ⅱ)設(shè),求數(shù)列的其前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題14分)已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,,求).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在數(shù)列中,
(1)      設(shè)求數(shù)列的通項(xiàng)公式
(2)      求數(shù)列的前項(xiàng)和。

查看答案和解析>>

同步練習(xí)冊(cè)答案