2.已知函數(shù)g(x)=(-x2+ax-3)ex(a為實數(shù)).當(dāng)a=5時,求函數(shù)y=g(x)在x=1處的切線方程.

分析 求出函數(shù)g(x)的導(dǎo)數(shù),可得切線的斜率和切點,再由點斜式方程即可得到所求切線的方程.

解答 解:當(dāng)a=5時,g(x)=(-x2+5x-3)ex,g(1)=e.
又g′(x)=(-x2+3x+2)ex
故切線的斜率為g′(1)=4e.
所以切線方程為:y-e=4e(x-1),
即y=4ex-3e.

點評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用點斜式方程是解題的關(guān)鍵,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2acosB=2c-b,若O是△ABC外接圓的圓心,且$\frac{cosB}{sinC}•\overrightarrow{AB}+\frac{cosC}{sinB}•\overrightarrow{AC}=m\overrightarrow{AO}$,則m=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在同一個袋子中含有不同標(biāo)號的紅、黑兩種顏色的小球共有8個,從紅球中選取2粒,從黑球中選取1粒,共有30種不同的選法,其中黑球至多有( 。
A.2粒B.4粒C.3粒D.5粒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則m=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}中,a5=9,a7=13,等比數(shù)列{bn}的通項公式bn=2n-1,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)當(dāng)n≥0時,試用分析法證明:$\sqrt{n+2}-\sqrt{n+1}<\sqrt{n+1}-\sqrt{n}$;
(2)已知x∈R,a=x2-1,b=2x+2.求證:a、b中至少有一個不小于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一名射擊運(yùn)動員射擊10次,命中環(huán)數(shù)如下,則該運(yùn)動員命中環(huán)數(shù)的標(biāo)準(zhǔn)差為( 。
10  10  10  9  10  8  8  10  10  8.
A.0.81B.0.9C.0.64D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b,c∈R函數(shù)f(x)=ax2+bx+c.若f(1)=f(3)>f(4),則(  )
A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+3cosα}\\{y=3sinα}\end{array}\right.$ (α為參數(shù)),A是C1上的動點,B點滿足$\overrightarrow{OB}$=4$\overrightarrow{OA}$,O為坐標(biāo)原點,B點的軌跡為曲線C2
(1)求C2的參數(shù)方程;
(2)在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=$\frac{π}{6}$與C1的異于極點的交點為M,與C2的異于極點的交點為N,求|MN|.

查看答案和解析>>

同步練習(xí)冊答案