如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),AE=3,正方形ABCD的邊長為

(1)求證:平面ABCD丄平面ADE;
(2)求四面體BADE的體積;
(3)試判斷直線OB是否與平面CDE垂直,并請說明理由.
(1)如下(2)(3)OB與平面CDE不垂直

試題分析:解:(1)∵AE⊥平面CDE,平面CDE,

∴AE⊥CD,又∵正方形ABCD,∴CD⊥AD,
,∴CD⊥平面ADE,
,∴平面ABCD丄平面ADE.
(2)為正方形,
,,
((1)已證),
,平面
∴四面體BCDE的體積,∵AE⊥平面CDE,∴AE⊥DE,在Rt△ADE中,,
∴四面體ABDE的體積
(3)連結(jié)CE,由(1)知,CD⊥平面ADE,∴CD⊥DE,∴弦CE為直徑,即O為CE中點(diǎn).
若OB⊥平面CDE,則CD⊥CE,∴BC=BE,又AB=BC,∴AB=BE,
由(2)知,AB⊥AE,∴AB<BE,矛盾,∴OB與平面CDE不垂直.
方法2:若OB⊥平面CDE,∵AE⊥平面CDE,∴OB//AE,∴四點(diǎn)A、B、E、O在同一平面上,平面ABOE平面CDE=OE,又AB//CD,AB平面CDE,CD平面CDE,∴AB//平面CDE,∴AB//OE,∴CD//OE,矛盾.
點(diǎn)評:解決立體幾何的題目,若幾何體是規(guī)則的圖形,則可建立空間直角坐標(biāo)系,用向量去解決問題較方便。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是不同的兩條直線,是不重合的兩個平面,則下列命題中為真命題的是(  )
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,分別為的中點(diǎn),,且

(1)證明:;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在圖一所示的平面圖形中,是邊長為 的等邊三角形,是分別以為底的全等的等腰三角形,現(xiàn)將該平面圖形分別沿折疊,使所在平面都與平面垂直,連接,得到圖二所示的幾何體,據(jù)此幾何體解決下面問題.

(1)求證:;
(2)當(dāng)時,求三棱錐的體積;
(3)在(2)的前提下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知長方體中, ,,則二面角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.

(1)點(diǎn)E為BC的中點(diǎn)時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(2)求證:無論點(diǎn)E在BC邊的何處,都有;
(3)當(dāng)為何值時,與平面所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列關(guān)于直線l,m與平面α,β的說法,正確的是  (    )
A.若lβ且α⊥β,則l⊥αB.若l⊥β且α∥β,則l⊥α
C.若l⊥β且α⊥β,則l∥αD.若αβ=m,且lm, 則l∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在棱長為的正方體中,分別為的中點(diǎn).

(1)求直線與平面所 成 角的大;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);
(2)問當(dāng)實(shí)數(shù)a在什么范圍時,BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(3)當(dāng)BC邊上有且僅有一個點(diǎn)Q使得PQ⊥QD時,求二面角Q-PD-A的大。

查看答案和解析>>

同步練習(xí)冊答案