如圖,正方形ABCD所在的平面與三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.
(1)求證:AB∥平面CDE;
(2)求證:平面ABCD⊥平面ADE.
科目:高中數(shù)學 來源: 題型:解答題
如圖,點C是以AB為直徑的圓上的一點,直角梯形BCDE所在平面與圓O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.
(1)證明:EO∥平面ACD;
(2)證明:平面ACD⊥平面BCDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得點P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示.點E、F分別為棱PC,CD的中點.
(1)求證:平面OEF∥平面APD;
(2)求證:CD⊥平面POF;
(3)在棱PC上是否存在一點M,使得M到P,O,C,F四點距離相等?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在棱長為的正方體中,點是棱的中點,點在棱上,且滿足.
(1)求證:;
(2)在棱上確定一點,使、、、四點共面,并求此時的長;
(3)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側棱AA1⊥平面ABC,△ABC為正三角形,側面AA1C1C是正方形, E是的中點,F是棱CC1上的點.
(1)當時,求正方形AA1C1C的邊長;
(2)當A1F+FB最小時,求證:AE⊥平面A1FB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐PABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中點,F為ED的中點.
(1)求證:平面PAC⊥平面PCD;
(2)求證:CF∥平面BAE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求直線B1C1與平面A1BC1所成角的正弦值;
(2)在線段BC1上確定一點D,使得AD⊥A1B,并求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com