【題目】在△ABC中,a,b,c分別是A,B,C的對邊,且 sinA= .
(1)若a2﹣c2=b2﹣mbc,求實(shí)數(shù)m的值;
(2)若a=2,求△ABC面積的最大值.
【答案】
(1)解:將 sinA= .兩邊平方,可得:2sin2A=3cosA,
即:(2cosA﹣1)(cosA+2)=0,解得:cosA= ,
∵0 ,
∴A=60°.
∵a2﹣c2=b2﹣mbc,可以變形可得: = ,即cosA= ,
∴m=1
(2)解:∵cosA= = ,
∴bc=b2+c2﹣a2≥2bc﹣a2,(當(dāng)且僅當(dāng)b=c時取等號)即bc≤a2,
∴S△ABC= sinA≤ × = ,
∴△ABC的面積的最大值為
【解析】(1)將 sinA= .兩邊平方,可解得:cosA= ,又0 ,可求A,利用已知及余弦定理即可得解m的值.(2)利用余弦定理及基本不等式可得bc=b2+c2﹣a2≥2bc﹣a2 , (當(dāng)且僅當(dāng)b=c時取等號)即bc≤a2 , 利用三角形面積公式即可得解.
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個內(nèi)角A,B,C對應(yīng)的邊分別a,b,c,且acosC,bcosB,ccosA成等差數(shù)列,則角B等于( )
A.30°
B.60°
C.90°
D.120°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則不等式x5f(x)>0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(1﹣x)(a>0且a≠1).
(1)求f(x)+g(x)的定義域;
(2)判斷函數(shù)f(x)+g(x)的奇偶性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點(diǎn).
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取件產(chǎn)品作為樣本,測出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表是甲流水線樣本的頻數(shù)分布表,圖是乙流水線樣本的頻率分布直方圖.
表:甲流水線樣本的頻數(shù)分布表 | ||||||||||||
|
圖:乙流水線樣本頻率分布直方圖 |
(Ⅰ)根據(jù)圖,估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù).
(Ⅱ)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件.
(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
附: (其中樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓M過坐標(biāo)原點(diǎn)O且圓心在曲線 上.
(1)若圓M分別與x軸、y軸交于點(diǎn)A、B(不同于原點(diǎn)O),求證:△AOB的面積為定值;
(2)設(shè)直線 與圓M 交于不同的兩點(diǎn)C,D,且|OC|=|OD|,求圓M的方程;
(3)設(shè)直線 與(Ⅱ)中所求圓M交于點(diǎn)E、F,P為直線x=5上的動點(diǎn),直線PE,PF與圓M的另一個交點(diǎn)分別為G,H,求證:直線GH過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)已知直線l經(jīng)過點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)已知直線l經(jīng)過點(diǎn)P(3,4),且直線l的傾斜角為θ(θ≠90°),若直線l經(jīng)過另外一點(diǎn)(cosθ,sinθ),求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2+2x﹣3>0},集合B={x|x2﹣2ax﹣1≤0,a>0}.若A∩B中恰含有一個整數(shù),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com