分析 (Ⅰ)由sinα+cosα=$\frac{\sqrt{10}}{5}$,兩邊平方得:$2sinαcosα=-\frac{3}{5}$,再由α的范圍求出sinα-cosα,進(jìn)一步得到sinα,cosα的值,則tanα的值可求;
(Ⅱ)利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$,再把tanα的值代入計(jì)算得答案.
解答 解:(Ⅰ)由sinα+cosα=$\frac{\sqrt{10}}{5}$,兩邊平方得:$2sinαcosα=-\frac{3}{5}$,
∵0<α<π,
∴$sinα-cosα=\frac{2\sqrt{10}}{5}$.
∴$sinα=\frac{3\sqrt{10}}{10}$,$cosα=-\frac{\sqrt{10}}{10}$.
故$tanα=\frac{sinα}{cosα}=\frac{\frac{3\sqrt{10}}{10}}{-\frac{\sqrt{10}}{10}}=-3$;
(Ⅱ)$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$=$\frac{2tanα}{ta{n}^{2}α+tanα-2}$
=$\frac{2×(-3)}{(-3)^{2}-3-2}=-\frac{3}{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)求值,考查了同角三角函數(shù)的基本關(guān)系的應(yīng)用以及三角函數(shù)的誘導(dǎo)公式,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (-1,2) | C. | (-2,2) | D. | (-2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{2}$ | B. | $\frac{5\sqrt{3}}{6}$ | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{2}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4e2 | B. | 8e | C. | 2 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com