【題目】已知數(shù)列滿足,且,.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,若對任意的都成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:
(1)利用題中的遞推關(guān)系計(jì)算可得后項(xiàng)與前項(xiàng)的比值為定值,計(jì)算首項(xiàng)為即可證得數(shù)列為等比數(shù)列;
(2)原問題轉(zhuǎn)化為對任意的都成立,分類討論可得:實(shí)數(shù)的取值范圍是.
試題解析:
(Ⅰ)因?yàn)?/span>,,,
所以,
所以,
又,
所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
(Ⅱ)由(Ⅰ)得,,即,
則
.
又 ,
要使對任意的都成立,
即(*)對任意的都成立.
①當(dāng)為正奇數(shù)時(shí),由(*)得,,
即,
因?yàn)?/span>,
所以對任意的正奇數(shù)都成立,
當(dāng)且僅當(dāng)時(shí),有最小值1,
所以.
②當(dāng)為正偶數(shù)時(shí),由(*)得,
,
即,
因?yàn)?/span>,
所以對任意的正偶數(shù)都成立.
當(dāng)且僅當(dāng)時(shí),有最小值,所以.
綜上所述,存在實(shí)數(shù),使得對任意的都成立,
故實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校高一數(shù)學(xué)考試后,對分(含分)以上的成績進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,分?jǐn)?shù)在分的學(xué)生人數(shù)為人.
(1)求這所學(xué)校分?jǐn)?shù)在分的學(xué)生人數(shù);
(2)請根據(jù)頻率發(fā)布直方圖估計(jì)這所學(xué)校學(xué)生分?jǐn)?shù)在分的學(xué)生的平均成績;
(3)為進(jìn)一步了解學(xué)生的學(xué)習(xí)情況,按分層抽樣方法從分?jǐn)?shù)在分和分的學(xué)生中抽出人,從抽出的學(xué)生中選出人分別做問卷和問卷,求分的學(xué)生做問卷, 分的學(xué)生做問卷的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知流程圖如下圖所示,該程序運(yùn)行后,為使輸出的值為16,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( )
A. 2 B. 3 C. 5 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若對任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)生物興趣小組在學(xué)校生物園地種植了一批名貴樹苗,為了解樹苗生長情況,從這批樹苗中隨機(jī)測量了其中50棵樹苗的高度(單位:厘米),把這些高度列成了如下的頻率分布表:
組別 | ||||||
頻數(shù) | 2 | 3 | 14 | 15 | 12 | 4 |
(1)在這批樹苗中任取一棵,其高度在85厘米以上的概率大約是多少?
(2)這批樹苗的平均高度大約是多少?
(3)為了進(jìn)一步獲得研究資料,若從組中移出一棵樹苗,從組中移出兩棵樹苗進(jìn)行試驗(yàn)研究,則組中的樹苗和組中的樹苗同時(shí)被移出的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,過點(diǎn)的直線與相交于、兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為.
(Ⅰ)判斷點(diǎn)是否在直線上,并給出證明;
(Ⅱ)設(shè),求的內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若函數(shù)的圖象與直線交于兩點(diǎn),線段中點(diǎn)的橫坐標(biāo)為,證明:(為函數(shù)的導(dǎo)函數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)已知產(chǎn)量和能耗呈線性關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)耗能為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng),求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com