已知函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+2xm(m為常數(shù)),則f(-1)的值為(  )

A.-3                             B.-1

C.1                               D.3

解析:函數(shù)f(x)為定義在R上的奇函數(shù),

f(0)=0,即f(0)=20m=0,解得m=-1.

f(x)=2x+2x-1(x≥0),f(1)=21+2×1-1=3,

f(-1)=-f(1)=-3.

答案:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+log2
x
3-x
(x∈(0,3))

(1)求證:f(x)+f(3-x)為定值.
(2)記S(n)=
1
2n
2n-1
i=1
f(1+
i
2n
)(n∈N*)
,求S(n).
(3)若函數(shù)f(x)的圖象與直線x=1,x=2以及x軸所圍成的封閉圖形的面積為S,試探究S(n)與S的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a•2x
2x+
2
的圖象過點(0,
2
-1)

(1)求f(x)的解析式;
(2)設(shè)P1(x1,y1),P2(x2,y2)為y=f(x)的圖象上兩個不同點,又點P(xP,yP)滿足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O為坐標(biāo)原點.試問:當(dāng)xP=
1
2
時,yP是否為定值?若是,求出yP的值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(x≠a)

(1)當(dāng)f(x)的定義域為[a+
1
2
,a+1]
時,求f(x)的值域;
(2)試問對定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個定值?若是,求出這個定值;若不是,說明理由;
(3)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標(biāo)為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.
(3)對于給定的實數(shù)a(a>1)是否存在這樣的數(shù)列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a滿足的條件;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案