已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}是兩個(gè)向量集合,則P∩Q=________.

{(1,1)}
分析:首先根據(jù)P={a|a=(1,0)+m(0,1),m∈R}以及P,Q兩個(gè)的關(guān)系求出m,n的值,然后求出P∩Q即可.
解答:∵P={a|a=(1,0)+m(0,1),m∈R}
={a|a=(1,m)},Q={b|b=(1-n,1+n),n∈R},

得:
∴a=b=(1,1),
∴P∩Q={(1,1)}.
故答案為:{(1,1)}
點(diǎn)評(píng):本題考查交集及其運(yùn)算,通過(guò)集合間的關(guān)系建立等式,解不等式組,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P={
a
|
a
=(1,0)+m(0,1),m∈R},Q={
b
|
b
=(1,1)+n(-1,1),n∈R}是兩個(gè)向量集合,則P∩Q=( 。
A、{(1,1)}
B、{(-1,1)}
C、{(1,0)}
D、{(0,1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:A={x||x-a|<4};q:{x|(x-2)(3-x)>0},且非p是非q的充分條件,則a的取值范圍為(  )
A、-1<a<6B、-1≤a≤6C、a<-1或a>6D、a≤-1或a≥6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P={
a
|
a
=(1,0)+m(0,1),m∈R},Q={
b
|
b
=(1,1)+n(-1,1),n∈R}是兩個(gè)向量集合,則P∩Q=
{(1,1)}
{(1,1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p=a+(a>2),q=(a>2),則(    )

A.p>q                B.p<q                  C.p≥q                 D.p≤q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:選擇題

已知P,A,B,C是平面內(nèi)四個(gè)不同的點(diǎn),且,則(    )

A.  A,B,C三點(diǎn)共線(xiàn)            B.  A,B,P三點(diǎn)共線(xiàn)   

C.  A,C,P三點(diǎn)共線(xiàn)            D.  B,C,P三點(diǎn)共線(xiàn)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案