A. | (1+x)2n | B. | (1-x)n | C. | (1-x2)n | D. | 2n+1 |
分析 由題意可得,(1+x)n =${C}_{n}^{0}$+${C}_{n}^{1}$•x+${C}_{n}^{2}$•x2+${C}_{n}^{3}$•x3+…+${C}_{n}^{n}$•xn=A+B,且(1-x)n =${C}_{n}^{0}$-${C}_{n}^{1}$•x+${C}_{n}^{2}$•x2-${C}_{n}^{3}$•x3+…+(-1)n•${C}_{n}^{n}$•xn=A-B,從而求得A2-B2 的值.
解答 解:由題意可得,(1+x)n =${C}_{n}^{0}$+${C}_{n}^{1}$•x+${C}_{n}^{2}$•x2+${C}_{n}^{3}$•x3+…+${C}_{n}^{n}$•xn=A+B,
(1-x)n =${C}_{n}^{0}$-${C}_{n}^{1}$•x+${C}_{n}^{2}$•x2-${C}_{n}^{3}$•x3+…+(-1)n•${C}_{n}^{n}$•xn=A-B,
∴A2-B2=(1-x2)n,
故選:C.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,明白二項(xiàng)式的結(jié)構(gòu)巧妙賦值是解答本題的關(guān)鍵屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 輸出年份y∈[2000,2500)且y∈N“哪年是閏年”“哪年不是閏年” | |
B. | 輸出年份y∈[2000,2500]且y∈N“哪年是閏年”“哪年不是閏年” | |
C. | 輸出年份y∈[2000,2500)且y∈N“多少年是閏年”“多少年不是閏年” | |
D. | 輸出年份y∈[2000,2500]且y∈N“多少年是閏年”“多少年不是閏年” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com