在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點(diǎn)M,則∠AMB≥90°的概率為   
【答案】分析:本題考查的知識點(diǎn)是幾何概型,解題要點(diǎn)是要分別求出滿足條件的事件對應(yīng)的線段長度及總事件對應(yīng)線段長度.
解答:解:過A點(diǎn)做BC的垂線,垂足為M',
當(dāng)M點(diǎn)落在線段BM'(含M'點(diǎn)不含B點(diǎn))上時∠AMB≥90
由∠A=90°,AB=1,BC=2
解得BM'=,則∠AMB≥90°的概率p==
故答案為:
點(diǎn)評:幾何概型的概率估算公式中的“幾何度量”,既可以為本題中的線段長度,也可以包含面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對應(yīng)的“幾何度量”N(A),再求出總的基本事件對應(yīng)的“幾何度量”N,最后根據(jù)P=求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,
i
,
j
分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,
AB
=
i
+
j
,
AC
=2
i
+m
j
,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,AC=3,則
AB
AC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)一模)在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點(diǎn),那么(
AB
-
AC
)•
AD
=
2
2
;若E是AB的中點(diǎn),P是△ABC(包括邊界)內(nèi)任一點(diǎn).則
AD
EP
的取值范圍是
[-9,9]
[-9,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC=
3:2
3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)
如圖,在Rt△ABC中,∠C=90°,E為AB上一點(diǎn),以BE為直徑作圓O剛好與AC相切于點(diǎn)D,若AB:BC=2:1,  CD=
3
,則圓O的半徑長為
2
2

查看答案和解析>>

同步練習(xí)冊答案