18.(1)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$,求橢圓E的方程;
(2)求經(jīng)過M(2,$\sqrt{2}$),N($\sqrt{6}$,1)兩點的橢圓的標準方程.

分析 (1)由題意可得:b=1,$\frac{c}{a}=\frac{\sqrt{2}}{2}$,a2=b2+c2,聯(lián)立解出即可得出.
(2)由題意可設橢圓的標準方程為:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1$,其中m,n>0,m≠n.把M(2,$\sqrt{2}$),N($\sqrt{6}$,1)代入可得:$\frac{4}{m}+\frac{2}{n}$=1,$\frac{6}{m}$+$\frac{1}{n}$=1,聯(lián)立解得即可得出.

解答 解:(1)由題意可得:b=1,$\frac{c}{a}=\frac{\sqrt{2}}{2}$,a2=b2+c2,聯(lián)立解得b=1,a2=2.
∴橢圓E的方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(2)由題意可設橢圓的標準方程為:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1$,其中m,n>0,m≠n.
把M(2,$\sqrt{2}$),N($\sqrt{6}$,1)代入可得:$\frac{4}{m}+\frac{2}{n}$=1,$\frac{6}{m}$+$\frac{1}{n}$=1,
聯(lián)立解得m=8,n=4.
∴經(jīng)過M(2,$\sqrt{2}$),N($\sqrt{6}$,1)兩點的橢圓的標準方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1.

點評 本題考查了橢圓的標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.阿基米德在《論球與圓柱》一書中推導球的體積公式時,得到一個等價的三角恒等式sin$\frac{π}{2n}+sin\frac{2π}{2n}+…+\frac{(2n-1)π}{2n}=\frac{1}{{tan\frac{π}{4n}}}$,若在兩邊同乘以$\frac{π}{2n}$,并令n→+∞,則左邊=$\lim_{x→∞}\sum_{i=1}^{2n}{\frac{π}{2n}sin\frac{iπ}{2n}}=\int_0^π{sinxdx}$.因此阿基米德實際上獲得定積分$\int_0^π{sinxdx}$的等價結(jié)果.則$\int_0^π{sinxdx}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在等比數(shù)列{an}中,a1+a3=3,a2+a4=6,則數(shù)列{an}的前10項的和為$\frac{3069}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,四邊形ABCD和四邊形ADD1A1均為矩形且所在的平面互相垂直,E為線段AB的中點.
(1)證明:直線BD1∥平面A1DE;
(2)若AB=2AD=2AA1=2,求點D1到平面A1DE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知曲線y=$\frac{{x}^{2}}{2}$-3lnx的一條切線的與直線x+2y+10=0垂直,則切點的橫坐標為( 。
A.$\frac{1}{3}$B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設m是實數(shù),f(x)=m-$\frac{2}{{2}^{x}+1}$(x∈R)
(1)若函數(shù)f(x)為奇函數(shù),求m的值;
(2)試用定義證明:對于任意m,f(x)在R上為單調(diào)遞增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),且不等式f(k•3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知⊙C:x2+y2-2x-4y-20=0,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)求證:直線l與⊙C恒有兩個交點;
(2)若直線l與⊙C的兩個不同交點分別為A,B.求線段AB中點P的軌跡方程,并求弦AB的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)是定義域R在上的奇函數(shù),且在區(qū)間[0,+∞)單調(diào)遞增,若實數(shù)a滿足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),則a的取值范圍是( 。
A.(-∞,2]B.$({0,\frac{1}{2}}]$C.$[{\frac{1}{2},2}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ) 求這4個人中恰有2個人去參加甲游戲的概率;
(Ⅱ) 用X表示這4個人中去參加乙游戲的人數(shù),求隨機變量X的分布列與數(shù)學期望E(X).

查看答案和解析>>

同步練習冊答案