橢圓上的任意一點(diǎn)(除短軸端點(diǎn)除外)與短軸兩個(gè)端點(diǎn)的連線交軸于點(diǎn),則的最小值是      

 

【答案】

【解析】

試題分析:求出橢圓上下頂點(diǎn)坐標(biāo),設(shè)P(xo,yo)K(xk,0)N(xn,0),利用K,P,B1三點(diǎn)共線求出K,N的橫坐標(biāo),利用p在橢圓上,推出|OK|?|ON|=a2即可.

解:由橢圓方程知B1(0,-b),B2(0,b)另設(shè)P(xo,yo)K(xk,0)N(xn,0),由K,P,B1三點(diǎn)共線, 同理,利用點(diǎn)在橢圓上,那么可知|OK|?|ON|=a2,即利用均值不等式可知其最小值為2a,故答案為2a

考點(diǎn):向量共線,橢圓的性質(zhì)

點(diǎn)評(píng):本題是中檔題,思路明確重點(diǎn)考查學(xué)生的計(jì)算能力,也可以由向量共線,或由直線方程截距式等求得點(diǎn)M坐標(biāo).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)二模)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的任意一點(diǎn)M(除短軸端點(diǎn)除外)與短軸兩個(gè)端點(diǎn)B1,B2的連線交x軸于點(diǎn)N和K,則|ON|+|OK|的最小值是
2a
2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宜賓二模)設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(Ⅰ) 若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和離心率;
(Ⅱ) 若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P是橢圓上除M、N外的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),求證:kPM•kPN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)二模)在圓中有結(jié)論“經(jīng)過圓心的任意弦的兩端點(diǎn)與圓上任意一點(diǎn)(除這兩個(gè)端點(diǎn)外)的連線的斜率之積為定值-1”是正確的.通過類比,對(duì)于橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,我們有結(jié)論“
經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的兩端點(diǎn)與橢圓上除這兩個(gè)端點(diǎn)外的任意一點(diǎn)P的連線的斜率之積為定值-
b2
a2
經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的兩端點(diǎn)與橢圓上除這兩個(gè)端點(diǎn)外的任意一點(diǎn)P的連線的斜率之積為定值-
b2
a2
”成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

橢圓上的任意一點(diǎn)M(除短軸端點(diǎn)除外)與短軸兩個(gè)端點(diǎn)B1,B2的連線交x軸于點(diǎn)N和K,則|ON|+|OK|的最小值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案