已知向量,函數(shù)·,且最小正周期為
(1)求的值;
(2)設(shè),求的值.

(1);(2).

解析試題分析:(1)先由向量數(shù)量積的坐標(biāo)表示,得,再由公式(其中)簡(jiǎn)化得:,從而由最小正周期為定出的值;(2)由分別得到的值.再由的范圍及公式得到的值.最后代入公式得到本題答案.在解題時(shí)注意由所在象限確定三角函數(shù)值的正負(fù),而不能誤以為有多種解.
試題解析:(1)由已知,易得    3分
的最小正周期為,即,解得    4分
(2)由(1),知,則   5分
,又,    7分
   9分
,又,   10分
   12分
考點(diǎn):1.平面向量的坐標(biāo)運(yùn)算;2.三角恒等變換;3.三角函數(shù)的基本運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求的最小正周期;
(Ⅱ)求在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),函數(shù)與函數(shù)圖像關(guān)于軸對(duì)稱.
(1)當(dāng)時(shí),求的值域及單調(diào)遞減區(qū)間;
(2)若,值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)設(shè)扇形的周長(zhǎng)是定值為,中心角.求證:當(dāng)時(shí)該扇形面積最大;
(2)設(shè).求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在銳角中,,,.
(I) 求角的大小;
(II)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的最小正周期; (2)求的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)A(4,0)、B(0,4)、C(
(1)若,且,求的大小;
(2),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,
(1)當(dāng)時(shí),求函數(shù)的值域:
(2)銳角中,分別為角的對(duì)邊,若,求邊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)在△ABC中,角A、B、C的對(duì)邊分別a、b、c,且
(1)求cosA的值;
(2)若,求向量方向上的投影.

查看答案和解析>>

同步練習(xí)冊(cè)答案