17.一個梯形采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原來梯形面積的(  )
A.$\frac{\sqrt{2}}{4}$倍B.$\frac{1}{2}$倍C.$\frac{\sqrt{2}}{2}$倍D.$\sqrt{2}$倍

分析 梯形的直觀圖仍是梯形,且上下底保持不變,設原來梯形高為h,則在直觀圖中表示梯形高的線段應為$\frac{h}{2}$,且與底邊夾角為45°,故梯形直觀圖的高為$\frac{h}{2}•sin45°$=$\frac{\sqrt{2}h}{4}$.

解答 解:設原來梯形上下底分別為a,b,高為h,則梯形面積為S=$\frac{a+b}{2}h$,
在梯形直觀圖中,上下底保持不變,表示梯形高的線段為$\frac{h}{2}$,且與底邊夾角為45°,故梯形直觀圖的高為$\frac{h}{2}•sin45°$=$\frac{\sqrt{2}h}{4}$,
∴梯形直觀圖的面積為S′=$\frac{a+b}{2}•\frac{\sqrt{2}h}{4}$,
∴$\frac{S′}{S}$=$\frac{\sqrt{2}}{4}$.
故選:A.

點評 本題考查了平面圖形直觀圖畫法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow a=({sin({2x+\frac{π}{6}}),1})$,$\overrightarrow b=({\sqrt{3},cos({2x+\frac{π}{6}})})$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,A、B、C的對邊分別是a、b、c,若$f(A)=\sqrt{3},sinC=\frac{1}{3},a=3$,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且$tanB=\frac{{\sqrt{3}ac}}{{{a^2}+{c^2}-{b^2}}}$.
(1)求∠B;
(2)求函數(shù)$f(x)=sinx+2sinBcosx,x∈[0,\frac{π}{2}]$的值域及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知$y=sin(\frac{π}{6}+2x)+cos2x$
(1)將函數(shù)化為正弦型函數(shù)y=Asin(ωx+φ)的形式;
(2)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設Sn為數(shù)列{an}的前n項和,2an+(-1)n•an=2n+(-1)n•2n,則S10=$\frac{2728}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)$f(x)=ln(x+2)-\frac{2}{x}$的零點所在的區(qū)間是(  )
A.(3,4)B.(2,e)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知定義域為R的函數(shù)$f(x)=\frac{{-{2^x}-b}}{{{2^{x+1}}+2}}$是奇函數(shù).
(Ⅰ)求實數(shù)b的值;
(Ⅱ)判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅲ)若關于x的方程f(x)=m在x∈[0,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-1}{2n+3}$,則$\frac{{a}_{9}}{_{10}}$=$\frac{50}{41}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知Sn是數(shù)列{an}的前n項和,且an=nsin$\frac{nπ}{3}$(n∈N*),則S50等于(  )
A.-24$\sqrt{3}$B.24$\sqrt{3}$C.-$\frac{75\sqrt{3}}{2}$D.$\frac{51}{2}\sqrt{3}$

查看答案和解析>>

同步練習冊答案