7.已知向量$\overrightarrow a=({sin({2x+\frac{π}{6}}),1})$,$\overrightarrow b=({\sqrt{3},cos({2x+\frac{π}{6}})})$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,A、B、C的對邊分別是a、b、c,若$f(A)=\sqrt{3},sinC=\frac{1}{3},a=3$,求b的值.

分析 (Ⅰ)化簡f(x)=2sin(2x+$\frac{π}{3}$),從而可得2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,從而解得;
(Ⅱ)化簡可得A=$\frac{π}{6}$;再由sinC=$\frac{1}{3}$可得C<$\frac{π}{6}$,cosC=$\frac{2\sqrt{2}}{3}$,從而利用正弦定理求解.

解答 解:(Ⅰ)f(x)=$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{3}$sin(2x+$\frac{π}{6}$)+cos(2x+$\frac{π}{6}$)
=2sin(2x+$\frac{π}{3}$),
當(dāng)2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,
即kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,(k∈Z),
函數(shù)f(x)單調(diào)遞減,
故函數(shù)f(x)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z);
(Ⅱ)f(A)=2sin(2A+$\frac{π}{3}$)=$\sqrt{3}$,
∴sin(2A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∴2A+$\frac{π}{3}$=2kπ+$\frac{π}{3}$或2A+$\frac{π}{3}$=2kπ+$\frac{2π}{3}$,
∴A=kπ或A=kπ+$\frac{π}{6}$,(k∈Z);
又∵A∈(0,π),∴A=$\frac{π}{6}$;
∵sinC=$\frac{1}{3}$,C∈(0,π),sinA=$\frac{1}{2}$,
∴C<$\frac{π}{6}$,cosC=$\frac{2\sqrt{2}}{3}$,
∴sinB=sin(A+C)=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,
∴b=$\frac{3sinB}{sinA}$=$\sqrt{3}$+2$\sqrt{2}$.

點評 本題考查了平面向量的應(yīng)用及三角恒等變換的應(yīng)用,同時考查了解三角形的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a>b>0),A1,A2是雙曲線實軸的兩個端點,MN是垂直于實軸所在直線的弦的兩個端點,則A1M與A2N交點的軌跡方程是(  )
A.$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1B.$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1C.$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1D.$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=$\sqrt{3}$sinωx+cosωx(ω>0),x∈R,在曲線y=f(x)與直線y=1的交點中,若相鄰交點距離的最小值為$\frac{π}{3}$,則f(x)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖(甲),等腰直角三角形的底邊AB=4,點D在線段AC上,DE⊥AB于點E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(乙))
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,PD=$\sqrt{2}$,求四棱錐P-DEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-2cos2$\frac{x}{2}$.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間及對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.△ABC中,角A,B,C所對應(yīng)的邊分別為b,b,c,若$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(1)求角A的大;
(2)若△ABC的面積為S,求$\frac{S}{\overrightarrow{AB}•\overrightarrow{AC}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=($\sqrt{2}$sinx,$\frac{{\sqrt{2}}}{2}$(cosx+sinx)),$\overrightarrow$=(cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若將f(x)的圖象向左平移$\frac{π}{4}$個單位,再將各點的縱坐標(biāo)伸長為原來的2倍,橫坐標(biāo)不變,得到函數(shù)g(x)的圖象.寫出g(x)的解析式并在給定的坐標(biāo)系中畫出它在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.甲、乙兩樓相距20米,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,求甲、乙兩樓的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個梯形采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原來梯形面積的( 。
A.$\frac{\sqrt{2}}{4}$倍B.$\frac{1}{2}$倍C.$\frac{\sqrt{2}}{2}$倍D.$\sqrt{2}$倍

查看答案和解析>>

同步練習(xí)冊答案