【題目】如圖是正四面體的平面展開(kāi)圖,分別是的中點(diǎn),在這個(gè)正四面體中:①與平行;②與為異面直線(xiàn);③與成60°角;④與垂直.以上四個(gè)命題中,正確命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:正四面體的平面展開(kāi)圖復(fù)原為正四面體A(B、C)﹣DEF,
①,依題意,MN∥AF,而DE與AF異面,從而可判斷DE與MN不平行;
②,假設(shè)BD與MN共面,可得A、D、E、F四點(diǎn)共面,導(dǎo)出矛盾,從而可否定假設(shè),肯定BD與MN為異面直線(xiàn);
③,依題意知,GH∥AD,MN∥AF,∠DAF=60°,于是可判斷GH與MN成60°角;
④,連接GF,那么A點(diǎn)在平面DEF的射影肯定在GF上,通過(guò)線(xiàn)面垂直得到線(xiàn)線(xiàn)垂直.
詳解:將正四面體的平面展開(kāi)圖復(fù)原為正四面體A(B、C)﹣DEF,如圖:
對(duì)于①,M、N分別為EF、AE的中點(diǎn),則MN∥AF,而DE與AF異面,故DE與MN不平行,故①錯(cuò)誤;
對(duì)于②,BD與MN為異面直線(xiàn),正確(假設(shè)BD與MN共面,則A、D、E、F四點(diǎn)共面,與ADEF為正四面體矛盾,故假設(shè)不成立,故BD與MN異面);
對(duì)于③,依題意,GH∥AD,MN∥AF,∠DAF=60°,故GH與MN成60°角,故③正確;
對(duì)于④,連接GF,A點(diǎn)在平面DEF的射影A1在GF上,∴DE⊥平面AGF,DE⊥AF,
而AF∥MN,∴DE與MN垂直,故④正確.
綜上所述,正確命題的序號(hào)是②③④,
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下面四個(gè)命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題存在,使得,則:任意,都有
④若且為假命題,則均為假命題,其中真命題個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專(zhuān)著,成于公元一世紀(jì)左右,系統(tǒng)總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就.其中《方田》一章中記載了計(jì)算弧田(弧田就是由圓弧和其所對(duì)弦所圍成弓形)的面積所用的經(jīng)驗(yàn)公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)為的弧田.其實(shí)際面積與按照上述經(jīng)驗(yàn)公式計(jì)算出弧田的面積之間的誤差為( )平方米.(其中,)
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)制造商在2019年年初公告:公司計(jì)劃2019年的生產(chǎn)目標(biāo)為43萬(wàn)輛.已知該公司近三年的汽車(chē)生產(chǎn)量如表所示:
年份(年) | 2016 | 2017 | 2018 |
產(chǎn)量(萬(wàn)輛) | 8 | 18 | 30 |
如果我們分別將2016,2017,2018,2019定義為第一、二、三、四年.現(xiàn)在有兩個(gè)函數(shù)模型:二次函數(shù)模型,指數(shù)型函數(shù)模型,哪個(gè)模型能更好地反映該公司年產(chǎn)量y與年份x的關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)指出函數(shù)的基本性質(zhì):定義域,奇偶性,單調(diào)性,值域(結(jié)論不需證明),并作出函數(shù)的圖象;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)三個(gè)數(shù)成等差數(shù)列,記對(duì)應(yīng)點(diǎn)的曲線(xiàn)是.
(1)求曲線(xiàn)的方程;
(2)已知點(diǎn),點(diǎn),點(diǎn),過(guò)點(diǎn)任作直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),設(shè)直線(xiàn)的斜率分別為,若,求滿(mǎn)足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為.
(1)若關(guān)于的方程的兩個(gè)實(shí)數(shù)根為,求證:;
(2)當(dāng)時(shí),證明函數(shù)在函數(shù)的最小零點(diǎn)處取得極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P,Q從點(diǎn)出發(fā)在單位圓上運(yùn)動(dòng),點(diǎn)P按逆時(shí)針?lè)较蛎棵腌娹D(zhuǎn)弧度,點(diǎn)Q按順時(shí)針?lè)较蛎棵腌娹D(zhuǎn)弧度,則P,Q兩點(diǎn)在第2019次相遇時(shí),點(diǎn)P的坐標(biāo)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com