分析 設(shè)圓O1及與圓O2的半徑分別為r1,r2,運用圓與圓的位置關(guān)系和圓的面積公式進行求解.
解答 設(shè)圓O1及與圓O2的半徑分別為r1,r2,
則$\left\{\begin{array}{l}{(r-{r}_{1})sinθ={r}_{1}}\\{({r}_{1}+{r}_{2})cos(\frac{π}{2}-θ)={r}_{1}-{r}_{2}}\end{array}\right.$,得:$\left\{\begin{array}{l}{{r}_{1}=\frac{rsinθ}{1+sinθ}}\\{{r}_{2}=\frac{{r}_{1}(1-sinθ)}{1+sinθ}}\end{array}\right.$
∴${r}_{2}=\frac{rsinθ(1-sinθ)}{(1+sinθ)^{2}}$,
∵0<2θ<2π,
∴0<θ<π,
令t=1+sinθ,(1<t<2).
那么:${r}_{2}=\frac{-{t}^{2}+3t-2}{{t}^{2}}$=$-2(\frac{1}{t}-\frac{3}{4})^{2}+\frac{1}{8}$,
當(dāng)$\frac{1}{t}=\frac{4}{3}$,即sinθ=$\frac{1}{3}$時,圓O2的半徑最大,圓O2的面積最大,
最大值是$\frac{{r}^{2}π}{64}$.
點評 本題考查了圓與圓的關(guān)系式問題,正確掌握圓與圓的位置關(guān)系是準確解題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 8+2$\sqrt{3}$ | C. | 12+2$\sqrt{3}$ | D. | 12+4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)成績 | 65 | 68 | 72 | 79 | 81 | 88 | 92 | 95 |
物理成績 | 72 | 77 | 80 | 84 | 86 | 90 | 93 | 98 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com