6.記cot(-80°)=a,那么sin20°=$\frac{2a}{{a}^{2}+1}$.

分析 利用三角函數(shù)的誘導(dǎo)公式求出tan10°,然后代入萬(wàn)能公式求得sin20°.

解答 解:由cot(-80°)=a,得-cot80°=a,
即cot80°=-a,
∴tan10°=-a,
∴sin20°=$\frac{2tan10°}{1+ta{n}^{2}10°}=\frac{-2a}{1+{a}^{2}}=-\frac{2a}{{a}^{2}+1}$.
故答案為:$-\frac{2a}{{a}^{2}+1}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的誘導(dǎo)公式,考查了二倍角的正弦,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且滿足bcosA+acosB=2ccosC,c=$\sqrt{3}$;
(1)若A=$\frac{π}{4}$,求邊b的長(zhǎng);
(2)求△ABC面積的最大值.
(3)求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足2cos2$\frac{A}{2}$=$\frac{\sqrt{3}}{3}$sinA,sin(B-C)=4cosBsinC,則$\frac{c}$=1+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若函數(shù)y=$\frac{1-2sinx}{sinx+3}$,求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.一個(gè)等比數(shù)列共有3m項(xiàng),若前2m項(xiàng)和為15,后2m項(xiàng)之和為60,則中間m項(xiàng)的和為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知雙曲線C:$\frac{{x}^{2}}{4}$-y2=1,P為C上的任意點(diǎn).
(1)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值
(2)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個(gè)常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知圓C的圓心為點(diǎn)C(0,3),點(diǎn)R($\sqrt{3}$,2)在圓C上,直線l過點(diǎn)A(-1,0)且與圓C相交P,Q兩點(diǎn),點(diǎn)M是線段PQ的中點(diǎn).
(1)求圓C的方程:
(2)若$\overrightarrow{AM}$•$\overrightarrow{AC}$=9,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P(a,b),Q(c,d),則方程$\left\{\begin{array}{l}{x=\frac{a+ct}{1+t}}\\{y=\frac{b+dt}{1+t}}\end{array}\right.$(t為參數(shù))表示的曲線是( 。
A.直線PQB.線段PQC.除去P點(diǎn)的直線PQD.除去Q點(diǎn)的直線PQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.一個(gè)袋子中有k個(gè)紅球,4個(gè)綠球,2個(gè)黃球,這些球除顏色外其他完全相同.從中一次隨機(jī)取出2個(gè)球,每取得1個(gè)紅球記1分、取得1個(gè)綠球記2分、取得1個(gè)黃球記5分,用隨機(jī)變量X表示取到2個(gè)球的總得分,已知總得分是2分的概率為$\frac{1}{12}$.
(Ⅰ)求袋子中紅球的個(gè)數(shù);
(Ⅱ)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案