【題目】已知對任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時針方向旋轉(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時針方向旋轉(zhuǎn)θ得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時針方向旋轉(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時針方向旋轉(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y= ,求原來曲線C的方程.

【答案】
(1)解:∵A(2,3), ,∴ ,

設(shè)點(diǎn)P的坐標(biāo)為P(x,y),則

繞點(diǎn)A逆時針方向旋轉(zhuǎn) 角得到: =(4,0)

∴(x﹣2,y﹣3)=(4,0)即 ,

,

即P(6,3)


(2)解:設(shè)旋轉(zhuǎn)前曲線C上的點(diǎn)為(x,y),旋轉(zhuǎn)后得到的曲線 上的點(diǎn)為(x',y'),則 解得:

代入 得x'y'=1即y2﹣x2=2


【解析】(1)求出 ,設(shè)點(diǎn)P的坐標(biāo)為P(x,y),求出 , 繞點(diǎn)A逆時針方向旋轉(zhuǎn) 角得到: ,列出方程求解即可.(2)設(shè)旋轉(zhuǎn)前曲線C上的點(diǎn)為(x,y),旋轉(zhuǎn)后得到的曲線 上的點(diǎn)為(x',y'),通過 整合求解即可.
【考點(diǎn)精析】利用圓的一般方程對題目進(jìn)行判斷即可得到答案,需要熟知圓的一般方程的特點(diǎn):(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項(xiàng);(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ﹣1(x≠0),k∈R.
(1)當(dāng)k=3時,試判斷f(x)在(﹣∞,0)上的單調(diào)性,并用定義證明;
(2)若對任意x∈R,不等式f(2x)>0恒成立,求實(shí)數(shù)k的取值范圍;
(3)當(dāng)k∈R時,試討論f(x)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關(guān)系為y1=18﹣ ,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關(guān)系為y2= (注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)當(dāng)x∈[0, ]時,求f(x)的值域;
(2)用五點(diǎn)法在圖中作出y=f(x)在閉區(qū)間[﹣ , ]上的簡圖;
(3)說明f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是(
A.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對稱
C.若方程f(x)=m在[﹣ ,0]上有兩個不相等的實(shí)數(shù)根,則實(shí)數(shù)m∈(﹣2,﹣ ]
D.將函數(shù)f(x)的圖象向左平移 個單位可得到一個偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1,2), =(﹣3,4).
(1)求 + 的夾角;
(2)若 滿足 ⊥( + ),( + )∥ ,求 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 1=a1≤a2≤…≤a7 , 其中a1 , a3 , a5 , a7 成公比為q的等比數(shù)列,a2 , a4 , a6成公差為1的等差數(shù)列,則q的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知R(x0 , y0)是橢圓 + =1上的一點(diǎn),從原點(diǎn)O向圓R(x﹣x02+(y﹣y02=12作兩條切線,分別交橢圓于P,Q兩點(diǎn).
(1)若R點(diǎn)在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,分別記為k1 , k2 , 求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(﹣ ,0),B( ,0),銳角α的終邊與單位圓O交于點(diǎn)P.
(Ⅰ)用α的三角函數(shù)表示點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng) =﹣ 時,求α的值;
(Ⅲ)在x軸上是否存在定點(diǎn)M,使得| |= | |恒成立?若存在,求出點(diǎn)M的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案