如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,,O、M分別為CE、AB的中點(diǎn),求直線CD和平面ODM所成角的正弦值.
【答案】分析:以C為原點(diǎn),分別以CA,CB為x,y軸,以過點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系,求出的坐標(biāo),設(shè)平面ODM的法向量n=(x,y,z),則由,且建立兩等式關(guān)系,求出x、y、z,設(shè)直線CD和平面ODM所成角為θ,利用sinθ=|cos<,>|進(jìn)行求解.
解答:解:∵DB⊥BA,又∵面ABDE⊥面ABC,面ABDE∩面ABC=AB,DB?面ABDE,
∴DB⊥面ABC,∵BD∥AE,∴EA⊥面ABC,
如圖所示,以C為原點(diǎn),分別以CA,CB為x,y軸,
以過點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系,
∵AC=BC=4,
∴設(shè)各點(diǎn)坐標(biāo)為C(0,0,0),A(4,0,0),B(0,4,0),D(0,4,2),E(4,0,4),
則O(2,0,2),M(2,2,0),,,,
設(shè)平面ODM的法向量n=(x,y,z),則由
可得
令x=2,則y=1,z=1,∴n=(2,1,1),
設(shè)直線CD和平面ODM所成角為θ,則,
∴直線CD和平面ODM所成角的正弦值為
點(diǎn)評(píng):本題主要考查了直線與平面所成的角,以及空間向量,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中等題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn),求直線CD和平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn).
(Ⅰ)求證:OD∥平面ABC;
(Ⅱ)求直線CD和平面ODM所成角的正弦值;
(Ⅲ)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn).
(1)求異面直線AB與CE所成角的大小.
(2)求直線CD和平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O,M,N分別為CE,AB,EM的中點(diǎn).
(1)求證:OD∥平面ABC;
(2)求證:ON⊥平面ABDE;
(3)求直線CD與平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2,O、M分別為CE、AB的中點(diǎn).
(1)求證:OD∥平面ABC;
(2)在棱EM上是否存在N,使ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說明理由;
(3)求二面角O-ED-M的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案