【題目】某校舉行環(huán)保知識(shí)競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(jī)(得分均為正數(shù),滿分100分),進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問(wèn)題:
(Ⅰ)求a、b的值;
(Ⅱ)若從成績(jī)較好的第3、4、5組中,按分層抽樣的方法抽取6人參加社區(qū)志愿者活動(dòng),并從中選出2人做負(fù)責(zé)人,求2人中至少有1人是第四組的概率.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60] | 5 | 0.05 |
第2組 | [60,70] | a | 0.35 |
第3組 | [70,80] | 30 | b |
第4組 | [80,90] | 20 | 0.20 |
第5組 | [90,100] | 10 | 0.10 |
合計(jì) | 100 | 1.00 |
【答案】解:(Ⅰ)由頻率和等于1,所以b=1.00﹣(0.05+0.35+0.20+0.10)=0.30. a=100×0.35=35;
(Ⅱ)因?yàn)榈谌、第四、第五組的學(xué)生數(shù)的比例是3:2:1,所以利用分層抽樣從中選6人,
第三、第四、第五組選取的學(xué)生人數(shù)分別是3人,2人,1人.
設(shè)第三組選取的學(xué)生為1,2,3.第四組選取的學(xué)生為a,b.第五組選取的學(xué)生為c.
則從6人中任意選出2人的所有方法種數(shù)是:(1,2),(1,3),(1,a),(1,b),(1,c),(2,3),
(2,a),(2,b),(2,c),(3,a),(3,b),(3,c),(a,b),(a,c),(b,c)共15種.
其中至少1人是第四組的方法種數(shù)是:(1,a),(1,b),(2,a),(2,b),(3,a),(3,b),(a,b),(a,c),(b,c)共9種.
所以2人中至少有1人是第四組的概率是
【解析】(Ⅰ)直接利用頻率和等于1求出b,用樣本容量乘以頻率求a的值;(Ⅱ)由分層抽樣方法求出所抽取的6人中第三、第四、第五組的學(xué)生數(shù),利用列舉法寫(xiě)出從中任意抽取2人的所有方法種數(shù),查出2人至少1人來(lái)自第四組的事件個(gè)數(shù),然后利用古典概型的概率計(jì)算公式求解.
【考點(diǎn)精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正六邊形ABCDEF中的一半圖形ABCD繞AD翻折到AB1C1D,使得∠B1AF=60°.G是BF與AD的交點(diǎn).
(Ⅰ)求證:平面ADEF⊥平面B1FG;
(Ⅱ)求直線AB1與平面ADEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)=x2+x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,其左頂點(diǎn)在圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線交橢圓于兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線與軸的交于點(diǎn),試問(wèn)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過(guò)點(diǎn),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.
(1)若直線與曲線有公共點(diǎn),求的取值范圍;
(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,△PAB為正三角形,四邊形ABCD為矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分別為PB,PC中點(diǎn).
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大。
(Ⅲ)在BC上是否存在點(diǎn)E,使得EN⊥平面AMN?若存在,求 的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,有下列4個(gè)命題:
①若,則的圖象關(guān)于直線對(duì)稱(chēng);
②與的圖象關(guān)于直線對(duì)稱(chēng);
③若為偶函數(shù),且,則的圖象關(guān)于直線對(duì)稱(chēng);
④若為奇函數(shù),且,則的圖象關(guān)于直線對(duì)稱(chēng).
其中正確的命題為 .(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在多面體中,是邊長(zhǎng)為2的等邊三角形,為的中點(diǎn),.
(1)若平面平面,證明:;
(2)求證:;
(3)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,射線y=x(x≥0)和y=0(x≥0)上分別依次有點(diǎn)A1、A2 , …,An , …,和點(diǎn)B1 , B2 , …,Bn…,其中 , , .且 , (n=2,3,4…).
(1)用n表示|OAn|及點(diǎn)An的坐標(biāo);
(2)用n表示|BnBn+1|及點(diǎn)Bn的坐標(biāo);
(3)寫(xiě)出四邊形AnAn+1Bn+1Bn的面積關(guān)于n的表達(dá)式S(n),并求S(n)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com