13.過拋物線y2=4x焦點F的直線交拋物線于A、B兩點,交其準(zhǔn)線于點C,且A、C位于x軸同側(cè),若|AC|=2|AF|,則|BF|等于( 。
A.2B.3C.4D.5

分析 由題意可知:|AC|=2|AF|,則∠ACD=$\frac{π}{6}$,利用三角形相似關(guān)系可知丨AF丨=丨AD丨=$\frac{4}{3}$,直線AB的切斜角$\frac{π}{3}$,設(shè)直線l方程,代入橢圓方程,利用韋達(dá)定理及拋物線弦長公式求得丨AB丨,即可求得|BF|.

解答 解:拋物線y2=4x焦點F(1,0),準(zhǔn)線方程l:x=-1,準(zhǔn)線l與x軸交于H點,
過A和B做AD⊥l,BE⊥l,
由拋物線的定義可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,
|AC|=2|AF|,即|AC|=2|AD|,
則∠ACD=$\frac{π}{6}$,由丨HF丨=p=2,
∴$\frac{丨HF丨}{丨AD丨}$=$\frac{丨CF丨}{丨AC丨}$=$\frac{3}{2}$,
則丨AF丨=丨AD丨=$\frac{4}{3}$,
設(shè)直線AB的方程y=$\sqrt{3}$(x-1),
$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=\sqrt{3}(x-1)}\end{array}\right.$,整理得:3x2-10x+1=0,
則x1+x2=$\frac{10}{3}$,
由拋物線的性質(zhì)可知:丨AB丨=x1+x2+p=$\frac{16}{3}$,
∴丨AF丨+丨BF丨=$\frac{16}{3}$,解得:丨BF丨=4,
故選C.

點評 本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,考查相似三角形的性質(zhì),考查計算能力,數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的頂點A(1,0),點B在x軸上移動,|AB|=|AC|,且BC的中點在y軸上.
(Ⅰ)求C點的軌跡Γ的方程;
(Ⅱ)已知軌跡Γ上的不同兩點M,N與P(1,2)的連線的斜率之和為2,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨立.
(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用ξ表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=1+tsinα\end{array}\right.$(t為參數(shù),0≤α<π),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,并取相同的長度單位,建立極坐標(biāo)系.曲線C1:p=1.
(1)若直線l與曲線C1相交于點A,B,點M(1,1),證明:|MA|•|MB|為定值;
(2)將曲線C1上的任意點(x,y)作伸縮變換$\left\{\begin{array}{l}x'=\sqrt{3x}\\ y'=y\end{array}\right.$后,得到曲線C2上的點(x',y'),求曲線C2的內(nèi)接矩形ABCD周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=0$,若向量$\overrightarrow c$滿足$({\overrightarrow a-\overrightarrow c})•({\overrightarrow b-\overrightarrow c})=0$,則$|{\overrightarrow c}|$的取值范圍是[0,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}1,x>0\\-1,x<0\end{array}\right.$,設(shè)$g(x)=\frac{f(x)}{x^2}$,則g(x)是( 。
A.奇函數(shù),在(-∞,0)上遞增,在(0,+∞)上遞增
B.奇函數(shù),在(-∞,0)上遞減,在(0,+∞)上遞減
C.偶函數(shù),在(-∞,0)上遞增,在(0,+∞)上遞增
D.偶函數(shù),在(-∞,0)上遞減,在(0,+∞)上遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以拋物線Γ的頂點為圓心,$\sqrt{2}$為半徑的圓交Γ于A、B兩點,且AB=2
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求Γ的方程;
(2)若過點A且與Γ只有一個公共點的直線交Γ的對稱軸于點C,點D在線段AB上,直線CD與Γ交于P、Q兩點,求證:PC•QD=PD•QC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知l、m是兩直線,α是平面,l∥α,m⊥α,則直線l、m的關(guān)系是( 。
A.l∥mB.l⊥mC.l與m是相交直線D.l與m是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$a=2ln\frac{2018}{2017}-{({\frac{2018}{2017}})^2},b=2ln\frac{2017}{2016}-{({\frac{2017}{2016}})^2}$,$c=2ln\frac{2016}{2015}-{({\frac{2016}{2015}})^2}$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

同步練習(xí)冊答案