9.已知全集U={-1,2,3,a},集合M={-1,3}.若∁UM={2,5},則實(shí)數(shù)a的值為5.

分析 求出集合M的補(bǔ)集,根據(jù)對(duì)應(yīng)關(guān)系求出a的值即可.

解答 解:∵集合M={-1,3},
∴∁UM={2,5}={2,a},
故a=5,
故答案為:5.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,考查補(bǔ)集的定義以及集合的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若sinα<0,tanα>0,則α的終邊在( 。
A.第一象限B.、第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$y=\sqrt{3}sin2x+2{cos^2}x-1$的值域是( 。
A.[-1,2]B.[-2,2]C.[-1,3]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈[-π,0],則f(x)的最大值為(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.$f(x)=1o{g_{\frac{1}{2}}}(sinxcosx+{cos^2}x)$的單調(diào)遞減區(qū)間為[kπ-$\frac{π}{4}$,kπ+$\frac{π}{8}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知${({x+1})^2}{({x+2})^{2016}}={a_0}+{a_1}({x+2})+{a_2}{({x+2})^2}+…+{a_{2018}}{({x+2})^{2018}}$,則$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2018}}}}{{{2^{2018}}}}$的值是($\frac{1}{2}$)2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若$0<{θ_1}<{θ_2}<\frac{π}{2}$,則必有( 。
A.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$
B.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$
C.$cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$
D.$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知a=0.5${\;}^{\frac{1}{3}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,c=log2.51.5,則a,b,c的大小關(guān)系( 。
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為( 。
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

查看答案和解析>>

同步練習(xí)冊(cè)答案