分析 設A(a,y1),B(a,y2),則y1=2a+2,y2=lna+a,求得|AB|,令y=lna-a-2,利用導數求出函數y的最大值,即可得到|AB|的最小值.
解答 解:設A(a,y1),B(a,y2),
則y1=2a+2,y2=lna+a,
∴|AB|=|y2-y1|=|lna+a-2a-2|=|lna-a-2|
令y=lna-a-2,
則y′=$\frac{1}{a}$-1,
∴函數y在(0,1)上單調遞增,在(1,+∞)上單調遞減,
∴a=1時,函數y取得最大值ln1-1-2=-3,即y≤-3.
則|AB|≥3,即有|AB|的最小值為3.
故答案為:3.
點評 本題考查導數知識的運用,考查學生分析解決問題的能力,正確求導確定函數的單調性是關鍵.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{27}$ | B. | $-\frac{1}{27}$ | C. | ±$\frac{1}{27}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 分層抽樣法 | B. | 抽簽法 | C. | 隨機數表法 | D. | 系統(tǒng)抽樣法 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y={x^{\frac{2}{3}}}$ | B. | $y={x^{\frac{3}{2}}}$ | C. | y=x-2 | D. | $y={x^{-\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {1,4} | B. | {2,3} | C. | {4} | D. | {2,4} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{{\sqrt{19}}}{2}$ | D. | $\frac{{2\sqrt{19}}}{19}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com