13.設(shè)P為直線3x+4y+3=0上的動點(diǎn),過點(diǎn)P做圓C:x2+y2-2x-2y+1=0的兩條切線,切點(diǎn)分別為A,B,當(dāng)四邊形PACB的面積最小時,∠APB=$\frac{π}{3}$.

分析 由題意畫出圖形,判斷四邊形面積最小時P的位置,利用點(diǎn)到直線的距離求出PC,然后求出∠P的大。

解答 解:圓C:x2+y2-2x-2y+1=0,即圓C:(x-1)2+(y-1)2=1,圓心坐標(biāo)(1,1),半徑為1;
由題意過點(diǎn)P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點(diǎn)分別為A,B,
可知四邊形PACB的面積是兩個三角形的面積的和,因?yàn)镃A⊥PA,CA=1,
顯然PC最小時四邊形面積最小,
即PC最小值=$\frac{|3+4+3|}{5}$=2.
sin∠CPA=$\frac{CA}{CP}$=$\frac{1}{2}$,
∴∠CPA=30°,所以∠P=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,正確判斷四邊形面積最小時的位置是解題的關(guān)鍵,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=$\left\{\begin{array}{l}{2x-1,x<0}\\{3-x,x≥0}\end{array}\right.$,求f(x)>-1的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.用1,2,3和兩個0隨機(jī)組成一個5位數(shù),則這個5位數(shù)中兩個0相鄰的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線f(x)=x2上兩點(diǎn)A(2,4)和B(2+d,f(2+d))),作割線,當(dāng)d=0.1時,割線的斜率是( 。
A.4B.4.1C.4.2D.4.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)P是雙曲線$\frac{x^2}{4}-\frac{y^2}{2}=1$上的動點(diǎn),若P到兩條漸近線的距離分別為d1,d2,則d1•d2=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中既是奇函數(shù)又在區(qū)間,[-1,1]上單調(diào)遞減的是( 。
A.y=sinxB.y=-|x+1|C.$y=ln\frac{2-x}{2+x}$D.y=$\frac{1}{2}$(2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,P為⊙O外一點(diǎn),PC交⊙O于F,C,PA切⊙O于A,B為線段PA的中點(diǎn),BC交⊙O于D,線段PD的延長線與⊙O交于E,連接FE.求證:
(Ⅰ)△PBD∽△CBP;
(Ⅱ)AP∥FE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在平而直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$ρ=\frac{a}{cosθ-2sinθ}$(a為非零常數(shù)).
(I)求曲線C和直線l的普通方程:
(Ⅱ)若曲線C上有且只有三個點(diǎn)到直線1的距離為$\frac{3\sqrt{5}}{5}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲、乙、丙三支球隊(duì)進(jìn)行某種比賽,其中兩隊(duì)比賽,另一隊(duì)當(dāng)裁判,每局比賽結(jié)束時,負(fù)方在下一局當(dāng)裁判.設(shè)各局比賽雙方獲勝的概率均為$\frac{1}{2}$,各局比賽結(jié)果相互獨(dú)立,且沒有平局,根據(jù)抽簽結(jié)果第一局甲隊(duì)當(dāng)裁判
(Ⅰ)求第四局甲隊(duì)當(dāng)裁判的概率;
(Ⅱ)用X表示前四局中乙隊(duì)當(dāng)裁判的次數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案