9.函數(shù)f(x)=sin2x+$\sqrt{3}$cosx-$\frac{3}{4}$(x∈[0,$\frac{π}{2}$])的最大值是1.

分析 同角的三角函數(shù)的關(guān)系以及二次函數(shù)的性質(zhì)即可求出.

解答 解:f(x)=sin2x+$\sqrt{3}$cosx-$\frac{3}{4}$=1-cos2x+$\sqrt{3}$cosx-$\frac{3}{4}$,
令cosx=t且t∈[0,1],
則y=-t2+$\sqrt{3}$t+$\frac{1}{4}$=-(t-$\frac{\sqrt{3}}{2}$)2+1,
當(dāng)t=$\frac{\sqrt{3}}{2}$時(shí),f(t)max=1,
即f(x)的最大值為1,
故答案為:1

點(diǎn)評(píng) 本題考查了同角的三角函數(shù)的關(guān)系以及二次函數(shù)的性質(zhì),屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.長(zhǎng)方體的長(zhǎng)、寬、高分別為3,2,1,其頂點(diǎn)都在球O的球面上,則球O的表面積為14π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=$\sqrt{6}$,AB=4.
(1)求證:M為PB的中點(diǎn);
(2)求二面角B-PD-A的大;
(3)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.安排3名志愿者完成4項(xiàng)工作,每人至少完成1項(xiàng),每項(xiàng)工作由1人完成,則不同的安排方式共有( 。
A.12種B.18種C.24種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-ax-xlnx,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e-2<f(x0)<2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sinx-cosx,g(x)=sin2x
(1)試說明由函數(shù)y=g(x)的圖象經(jīng)過變換得到函數(shù)y=f(x)的圖象的變換過程;
(2)若h(x)=f(x)+g(x),求函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知θ∈($\frac{π}{2}$,π),tan(θ-$\frac{π}{4}$)=-$\frac{4}{3}$,則sin(θ+$\frac{π}{4}$)=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是$\widehat{DF}$的中點(diǎn).
(Ⅰ)設(shè)P是$\widehat{CE}$上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(Ⅱ)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案