已知△ABC中,∠B=60°,AC=4,面積為,求AB和BC.
【答案】分析:設(shè)AB=c,BC=a,則根據(jù)兩邊夾角求面積公式和余弦定理聯(lián)立方程求得a+c和a-c的值,進(jìn)而求得a和c,則AB和BC可得.
解答:解:設(shè)AB=c,BC=a,則有

解之,由(a+c)2=28,∴a+c=2,
由(a-c)2=12,∴a-c=

故所求AB,BC之長(zhǎng)為
點(diǎn)評(píng):本題主要考查了余弦定理的應(yīng)用.考查了學(xué)生對(duì)解三角形方法基本知識(shí)的掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,b=2,c=
3
,三角形面積S=
3
2
,則A等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,b=30,c=15,∠C=29°,則此三角形解的情況是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)已知△ABC中,∠B=60°,且AB=1,BC=4,則邊BC上的中線AD的長(zhǎng)為多少?
(理科)在△ABC中,BC=a,AC=b,a、b是方程x2-2
3
x+2=0
的兩個(gè)根,且2cos(A+B)=1,求:
(1)∠C的度數(shù);
(2)AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•湛江二模)已知△ABC中,B=C=
5
,記cosA=x,cosB=cosC=y.
(Ⅰ)求證:1+y=2x2;
(Ⅱ)若△ABC的面積等于2sin
π
5
,求AC邊上的中線BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•溫州一模)已知△ABC中,∠B=
π
3
,AC=
3
,BC=1,則∠A=
π
6
π
6

查看答案和解析>>

同步練習(xí)冊(cè)答案