1.已知全集為R,集合M={-1,1,2,4},N={x|x2-2x≥3},則M∩(∁RN)=( 。
A.{-1,2,2}B.{1,2}C.{4}D.{x|-1≤x≤2}

分析 化簡(jiǎn)集合N,根據(jù)補(bǔ)集與交集的定義進(jìn)行計(jì)算即可.

解答 解:全集為R,集合M={-1,1,2,4},
N={x|x2-2x≥3}={x|x2-2x-3≥0}={x|x≤-1或x≥3},
∴∁RN={x|-1<x<3},
∴M∩(∁RN)={1,2}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線m、n與平面α,β,m⊥α,n⊥β,若α⊥β,則m、n的位置關(guān)系是( 。
A.平行B.垂直C.相交D.異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2a(cos2x+sinxcosx)+b
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間
(2)當(dāng)a>0,且x∈[0,$\frac{π}{2}$]時(shí),f(x)的最大值為4,最小值為3,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列各組函數(shù)表示同一函數(shù)的是( 。
A.y=x與$y=\sqrt{x^2}$B.y=x+1與$y=\frac{{{x^2}-1}}{x-1}$
C.$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$與y=0D.y=x與$y=\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知△ABC的面積是4,∠BAC=120°,點(diǎn)P滿足$\overrightarrow{BP}$=3$\overrightarrow{PC}$,過(guò)點(diǎn)P作邊AB,AC所在直線的垂線,垂足分別是M,N.則$\overrightarrow{PM}$•$\overrightarrow{PN}$=$\frac{3\sqrt{3}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,已知$AB=\sqrt{3}$,$C=\frac{π}{3}$,則$\overrightarrow{CA}•\overrightarrow{CB}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=sin2x+2cosx在R上的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某連續(xù)經(jīng)營(yíng)公司的5個(gè)零售店某月的銷(xiāo)售額和利潤(rùn)資料如表:
商店名稱A B C D E 
 銷(xiāo)售額(x)/千萬(wàn)元 3 5 6 7 9
 利潤(rùn)(y)/百萬(wàn)元 2 3 3 4 5
(1)若銷(xiāo)售額和利潤(rùn)額具有線性相關(guān)關(guān)系,用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷(xiāo)售額x的回歸直線方程;
(2)若該連鎖經(jīng)營(yíng)公司旗下的某商店F次月的銷(xiāo)售額為1億3千萬(wàn)元,試用(1)中求得的回歸方程,估測(cè)其利潤(rùn).(精確到百萬(wàn)元) 
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=$\sqrt{3}$,AA1=1,則異面直線AD與BC1所成角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案