6.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,若$a=1,b=\sqrt{3},C={30^0}$,則c=1,△ABC的面積S=$\frac{{\sqrt{3}}}{4}$.

分析 根據(jù)題意可知在△ABC中,a=1,b=$\sqrt{3}$,C=30°,由余弦定理得c,根據(jù)三角形的面積S=$\frac{1}{2}$absin∠C即可解得答案

解答 解:∵在△ABC中,a=1,b=$\sqrt{3}$,C=30°,
由余弦定理得c=$\sqrt{{a}^{2}+^{2}-2abcosC}=1$
∴三角形的面積S=$\frac{1}{2}$absin∠C=$\frac{1}{2}$×1×$\sqrt{3}$×sin30=$\frac{\sqrt{3}}{4}$,
故答案為1、$\frac{\sqrt{3}}{4}$.

點評 本題考查了余弦定理、面積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動,為了解本次考試學(xué)生的某學(xué)科成績情況,從中抽取了部分學(xué)生的分數(shù)(滿分100分),得分取整數(shù),抽取得學(xué)生的分數(shù)均在[50,100]內(nèi)作為樣本(樣本容量為n)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出的頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(莖葉圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)在選取的樣本中,從成績在80分以上(含80分)的學(xué)生中隨機抽取2名學(xué)生參加“升級學(xué)科基礎(chǔ)知識競賽”,求所抽取的2名學(xué)生中恰有1人得分在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在二項式(1-2x)9的展開式中,
(1)求展開式的第四項;
(2)求展開式的常數(shù)項;
(3)求展開式中各項的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=sinx-cosx,則$f'(\frac{π}{3})$=( 。
A.$-\frac{1}{2}-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}+\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,那么下列結(jié)論正確的是( 。
A.$\overrightarrow a+\overrightarrow b=\overrightarrow c$B.$\overrightarrow a+\overrightarrow b=-\overrightarrow c$C.$\overrightarrow a-\overrightarrow b=-\overrightarrow c$D.$\overrightarrow b+\overrightarrow c=\overrightarrow a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在銳角△ABC中,角A,B,C所對的邊分別是a,b,c,且$\sqrt{3}$csinA-acosC+b-2c=0.
(1)求角A的大小;
(2)求cosB+cosC的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l:y=x+m與函數(shù)f(x)=ln(x+2)的圖象相切于點P.
(1)求實數(shù)m的值;
(2)證明除切點P外,直線l總在函數(shù)f(x)的圖象的上方;
(3)設(shè)a,b,c是兩兩不相等的正實數(shù),且a,b,c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ax-1恒成立,求整數(shù)a的最小值.
(3)若a=-2,正實數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2017年廈門航空公司在調(diào)查男女乘客140人是否暈機的情況中,已知男乘客60人,其中暈機為15人,女乘客80人,其中暈機為35人.
(1)根據(jù)以上的數(shù)據(jù)建立一個列聯(lián)表
(2)能否在犯錯誤的概率不超過0.001的前提下認為暈機與性別有關(guān)
(1)給定臨界值表
P(K≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83
(2)${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

同步練習(xí)冊答案