【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2 , 則不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集為(
A.(﹣∞,﹣2012)
B.(﹣2012,0)
C.(﹣∞,﹣2016)
D.(﹣2016,0)

【答案】C
【解析】解:由2f(x)+xf′(x)>x2 , (x<0), 得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
則當(dāng)x<0時(shí),
得F′(x)<0,即F(x)在(﹣∞,0)上是減函數(shù),
∴F(x+2014)=(x+2014)2f(x+2014),F(xiàn)(﹣2)=4f(﹣2),
即不等式等價(jià)為F(x+2014)﹣F(﹣2)>0,
∵F(x)在(﹣∞,0)是減函數(shù),
∴由F(x+2014)>F(﹣2)得,x+2014<﹣2,
即x<﹣2016,
故選:C.
根據(jù)條件,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)绾瘮?shù)f(x)圖象過(guò)(2,4),則冪函數(shù)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x﹣2).若當(dāng)x∈[﹣3,0]時(shí),f(x)=6x , 則f(919)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+2cosx,若f(x1)>f(x2),則下列不等式一定成立的是(
A.x1>x2
B.|x1|<|x2|
C.x1>|x2|
D.x12>x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明某命題時(shí),對(duì)其結(jié)論:“自然數(shù)a、b、c中恰有一個(gè)奇數(shù)”正確的反設(shè)為(
A.a、b、c都是奇數(shù)
B.a、b、c都是偶數(shù)
C.a、b、c中至少有兩個(gè)奇數(shù)
D.a、b、c中至少有兩個(gè)奇數(shù)或都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(﹣3)=0,則xf(x)<0的解集是(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或0<x<3}
C.{x|x<﹣3或x>3}
D.{x|﹣3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|﹣4≤x﹣6≤0},集合B={x|2x﹣6≥3﹣x}.
(1)求R(A∩B);
(2)若C={x|x≤a},且A∩C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“x0∈R,x3﹣x2+1>0”的否定是(
A.x∈R,x3﹣x2+1≤0
B.x0∈R,x3﹣x2+1<0
C.x0∈R,x3﹣x2+1≤0
D.不存在x∈R,x3﹣x2+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小趙、小錢、小孫、小李四位同學(xué)被問(wèn)到誰(shuí)去過(guò)長(zhǎng)城時(shí), 小趙說(shuō):我沒(méi)去過(guò);
小錢說(shuō):小李去過(guò);
小孫說(shuō);小錢去過(guò);
小李說(shuō):我沒(méi)去過(guò).
假定四人中只有一人說(shuō)的是假話,由此可判斷一定去過(guò)長(zhǎng)城的是(
A.小趙
B.小李
C.小孫
D.小錢

查看答案和解析>>

同步練習(xí)冊(cè)答案