【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

【答案】D

【解析】

因?yàn)辄c(diǎn)到拋物線焦點(diǎn)距離等于點(diǎn)到拋物線的準(zhǔn)線的距離,所以到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小等價(jià)于到點(diǎn)的距離與點(diǎn)到拋物線準(zhǔn)線距離之和取得最小,如圖,由幾何性質(zhì)可得,從向準(zhǔn)線作垂線,其與拋物線交點(diǎn)就是所求點(diǎn),將代入,可得,點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為,故選D.

【方法點(diǎn)晴】本題主要考查拋物線的標(biāo)準(zhǔn)方程和拋物線的簡單性質(zhì)及利用拋物線的定義求最值,屬于難題.與拋物線的定義有關(guān)的最值問題常常實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化:(1)將拋物線上的點(diǎn)到準(zhǔn)線的距化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,利用“點(diǎn)與直線上所有點(diǎn)的連線中垂線段最短”原理解決.本題是將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再根據(jù)幾何意義解題的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,完成數(shù)學(xué)問題.

我校高二文科班的同學(xué)到武昌農(nóng)民運(yùn)動(dòng)講習(xí)所研學(xué)的途中路過武漢長江大橋邊的武昌長江大堤,同學(xué)們在大堤上看到與武昌隔江相對的漢陽龜山上的電視塔和漢陽江邊的晴川飯店在朝陽的映照下顯得非常美麗,紛紛拿出手機(jī)拍照。這時(shí)帶隊(duì)的老師問大家,我要站在武昌大堤的哪一點(diǎn)才能夠同時(shí)拍下電視塔和晴川飯店最清晰的圖像?聽到這個(gè)問題后,同學(xué)們議論紛紛。討論一會(huì)后,一個(gè)同學(xué)對大家說:“把電視塔看成點(diǎn)A,飯店看成點(diǎn)B,武昌大堤看成直線l,C是直線l上的動(dòng)點(diǎn),拍照最佳點(diǎn)就是直線上使∠ACB最大的點(diǎn).使∠ACB最大的點(diǎn)的求法用初中數(shù)學(xué)的一個(gè)定理:過點(diǎn)A,B作與直線l相切的圓,半徑較小的圓和直線l的切點(diǎn)就是直線l上使∠ACB最大的點(diǎn)!崩蠋熀屯瑢W(xué)們聽了拍手稱對;氐綄W(xué)校后,一位同學(xué)利用百度地圖測距功能測得點(diǎn)A到直線l距離是2km,點(diǎn)B到直線l距離是1.5km,A,B兩點(diǎn)間的距離是1km.該同學(xué)以直線lx軸,過A點(diǎn)和直線l垂直的直線為y軸建立了如圖所示的坐標(biāo)系,點(diǎn)A的坐標(biāo)為(0, 2),點(diǎn)B在第一象限.根據(jù)以上材料,請?jiān)谒o的坐標(biāo)系中,在x軸上求使∠ACB最大的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為.

(1)當(dāng)軸垂直時(shí),求直線的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個(gè)命題:
①垂直于同一條直線的兩條直線平行;
②垂直于同一條直線的兩個(gè)平面平行;
③垂直于同一平面的兩個(gè)平面平行;
④垂直于同一平面的兩條直線平行.
其中正確的命題有(填寫所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)過點(diǎn)P(2,1),且離心率為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足 ,直線PM、PN分別交橢圓于A,B.
(i)求證:直線AB過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(ii)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin2x+ cos2x圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移 個(gè)單位長度,得到函數(shù)g (x)的圖象,則g(x)圖象的一條對稱軸方程是(
A.x=一
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為圓外一點(diǎn),若圓上存在一點(diǎn),使得,則正數(shù)的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸為正半軸為極軸的極坐標(biāo)系中,過極點(diǎn)O的射線與曲線C相交于不同于極點(diǎn)的點(diǎn)A,且點(diǎn)A的極坐標(biāo)為(2 ,θ),其中θ∈( ,π)
(Ⅰ)求θ的值;
(Ⅱ)若射線OA與直線l相交于點(diǎn)B,求|AB|的值.

查看答案和解析>>

同步練習(xí)冊答案