①由“若a,b,c∈R,則(ab)c=a(bc)”類比“若a、b、c為三個(gè)向量,則(a·b)c=a(b·c)”;
②在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
③在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
上述三個(gè)推理中,正確的個(gè)數(shù)為(  )

A.0B.1C.2D.3

解析試題分析:①顯然錯(cuò)誤,向量沒有結(jié)合律;
②根據(jù),可構(gòu)造出,即,可得,該數(shù)列是公比為2,首項(xiàng)是的等比數(shù)列,所以其通項(xiàng)公式為,可得,正確;
③四面體就是三棱錐,可看作是底面三角形中任取一點(diǎn),將其向上提而形成的幾何體,顯然三個(gè)側(cè)面的面積之和大于底面面積.正確.
考點(diǎn):向量運(yùn)算定律;利用遞推公式構(gòu)造等比數(shù)列求通項(xiàng)公式;空間幾何的猜想.類比推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在空間直角坐標(biāo)系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1).

(1)求|AB|的長度;
(2)寫出A、B兩點(diǎn)經(jīng)此程序框圖執(zhí)行運(yùn)算后的對(duì)應(yīng)點(diǎn)A0,B0的坐標(biāo),并說出點(diǎn)A0,B0在空間直角坐標(biāo)系o-xyz中的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用數(shù)學(xué)歸納法證明“時(shí),從“”時(shí),左邊應(yīng)增添的式子是(    ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

把正整數(shù)按右圖所示的規(guī)律排序,則從2013到2015的箭頭方向依次為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),反設(shè)正確的是(   )

A.假設(shè)三內(nèi)角都不大于60度
B.假設(shè)三內(nèi)角都大于60度
C.假設(shè)三內(nèi)角至多有一個(gè)大于60度
D.假設(shè)三內(nèi)角至多有兩個(gè)大于60度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)的內(nèi)容應(yīng)為( )

A.假設(shè)至少有一個(gè)鈍角 B.假設(shè)至少有兩個(gè)鈍角 
C.假設(shè)沒有一個(gè)鈍角 D.假設(shè)沒有一個(gè)鈍角或至少有兩個(gè)鈍角 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若執(zhí)行的程序框圖如圖所示,那么輸出的S= 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題“設(shè)為實(shí)數(shù),則方程至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是(   )

A.方程沒有實(shí)根 B.方程至多有一個(gè)實(shí)根
C.方程至多有兩個(gè)實(shí)根 D.方程恰好有兩個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列推理是歸納推理的是(  )

A.A,B為定點(diǎn),動(dòng)點(diǎn)P滿足|PA|+|PB|=2a>|AB|,則P點(diǎn)的軌跡為橢圓
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項(xiàng)和Sn的表達(dá)式
C.由圓x2+y2=r2的面積πr2,猜想出橢圓+=1的面積S=πab
D.以上均不正確

查看答案和解析>>

同步練習(xí)冊答案