設(shè)α角的終邊上一點(diǎn)P的坐標(biāo)是(cos
π
5
,sin
π
5
),則α等于( 。
A、
π
5
B、-
π
5
C、2kπ+
3
10
π(k∈Z)
D、2kπ+
π
5
(k∈Z)
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:利用任意角的三角函數(shù)的定義及終邊相同的角之間的關(guān)系,即可求得答案.
解答: 解:∵cosα=cos
π
5
,sinα=sin
π
5
,
∴α為與
π
5
終邊相同的角,
∴α=2kπ+
π
5
(k∈Z),
故選:D.
點(diǎn)評(píng):本題考查任意角的三角函數(shù)的定義及終邊相同的角之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
1-ai
1+i
(a∈R)實(shí)部為-1,則z的虛部為(  )
A、2B、-2C、3D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx-
π
3
)(ω>0)的周期是π,將函數(shù)f(x)的圖象沿x軸向左平移
π
6
得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式是(  )
A、g(x)=sin(
1
2
x-
π
4
B、g(x)=sin(2x-
π
6
C、g(x)=sin2x
D、g(x)=sin(2x-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列,{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則ba1+ba2+…+ba6等于( 。
A、78B、84
C、124D、126

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a是實(shí)數(shù),若(1+i)(3-ai)是純虛數(shù),則a=( 。
A、-1B、1C、-3D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的奇函數(shù),對(duì)任意x∈R總有f(x+
3
2
)=-f(x),則f(-
9
2
)的值為( 。
A、0
B、3
C、
3
2
D、-
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y=
1
8
x2,則以拋物線的焦點(diǎn)F為一個(gè)焦點(diǎn),且離心率為
2
的雙曲線E的標(biāo)準(zhǔn)方程為(  )
A、
x2
2
-
y2
2
=1
B、
y2
2
-
x2
2
=1
C、
y2
1
2
-
x2
1
2
=1
D、
x2
1
2
-
y2
1
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ex(ax2-7x+13),其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線l:2ex-y+e=0平行.
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(mx+n)e-x(m,n∈R,e為自然數(shù))
①若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程為x+ey-3=0,試確定函數(shù)f(x)的單調(diào)區(qū)間.
②當(dāng)n=-1,m∈R時(shí),若對(duì)于任意x∈[
1
2
,1]都有f(x)≥x恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案